
Differential Evolution Algorithm Applied to
Non-Stationary Bandit Problem

David L. St-Pierre
University of Liège

B-4000 Liège, Belgium
TAO, Inria, Univ. Paris-Sud, Paris, UMR CNRS 8623, FR

91190 Gif-sur-Yvette, France
Email: davidls@lri.fr

Jialin Liu
TAO, Inria, Univ. Paris-Sud, Paris, UMR CNRS 8623, FR

91190 Gif-sur-Yvette, France
Email: liu@lri.fr

Abstract—In this paper we compare Differential Evolution
(DE), an evolutionary algorithm, to classical bandit algorithms
over the non-stationary bandit problem. First we define a testcase
where the variation of the distributions depends on the number of
times an option is evaluated rather than over time. This definition
allows the possibility to apply these algorithms over a wide range
of problems such as black-box portfolio selection. Second we
present our own variant of discounted Upper Confidence Bound
(UCB) algorithm that outperforms the current state-of-the-art
algorithms for the non-stationary bandit problem. Third, we
introduce a variant of DE and show that, on a selection over
a portfolio of solvers for the Cart-Pole problem, our version of
DE outperforms the current best UCB algorithms.

I. INTRODUCTION

We are interested in a situation where an agent faces K
possible options of unknown distribution(s) and is given T
sequential evaluations, where T is not necessarily known.
The agent is then asked to output π̃, a recommendation that
corresponds to a probability distribution over K options, ac-
cording to a performance criterion. In our case the performance
criterion is the Simple Regret (SR) and we seek to maximize
a reward.

This class of problems is well formalized through the bandit
framework [?] and more specifically our setting is similar to
[?]. Typically this framework tackles effectively the tradeoff
between exploration and exploitation.

During the evaluation process t ∈ T , the agent selects
an option k ∈ K according to its selection policy π(·). A
selection policy π(·) ∈ K is an algorithm that selects an option
based on the information at hand. A representative example of
a selection policy is UCB[?]. At the tth evaluation, the option
k is selected and a reward rk,t is computed. A detailed de-
scription of the selection policies and the distribution updates
used in this paper are provided in Section ??.

Such a process is repeated until the allocated number of
evaluations T has been executed. Afterward, following the
recommendation π̃, an option k̃ is chosen. The pseudo code
for a generic bandit algorithm up to the recommendation of
k̃ is provided in Algorithm ?? and the recommendation of k̃
used in this paper is provided in Section ??. In this paper we
focus on non-stationary distributions. A non-stationary bandit
problem implies that the distribution of each option k ∈ K

Algorithm 1 Generic Bandit Algorithm. The problem is
described through the “get stochastic reward”, a stochastic
method and the option sets. The “return” method is formally
called the recommendation policy. The selection policy is also
commonly termed exploration policy.

Require: T > 0: Computational budget
Require: K: Set of options
Require: π: Selection policy

for t = 1 to T do
Select k ∈ K based upon π(·)
Get stochastic reward rk,t
Update the information of k with rk,t

end for
Return π̃: Probability distribution over the set K

changes. In such cases, most of the literature is focused over a
variation of distributions based upon the number of evaluations
t[?], [?], [?]. In this paper, we focus on a variation based
upon the number of times we select an option. The reward
distribution for an option improves as we select it more often.
Such framework possesses a wide range of applications. The
selection of an object from a portfolio is a good example and
covers several testcases that justify such a definition.

In this paper we are interested in comparing an evolutionary
approach, namely Differential Evolution (DE)[?], to the clas-
sical bandit approach. DE is arguably one of the main evo-
lutionary algorithms. It does not require heavy computations,
performs well on many optimization testbeds [?], [?], [?] and
possesses many variants including self-adaptive parameters
[?], [?], [?], [?]. Our contribution is a variation of DE that
outperforms UCB-Discounted[?] and UCB-Discounted2 (see
Section ??), both variants of UCB[?] for the non-stationary
testcase.

Section ?? formulates the problem and introduces classic
selection policies. Section ?? presents the DE algorithm and
our variant. Section ?? shows the results and Section ??
concludes.

II. PROBLEM STATEMENT

In this section we formalize the bandit problem and intro-
duce its related selection policy. Section ?? defines the non-
stationary problem and presents two variants of UCB, one
of the most popular selection policy for stationary bandit,
UCB-Discounted, termed πUCBdt, and our modified UCB-
Discounted, termed πUCBdn. These variants of UCB are
specific for the non-stationary bandit problem. The first one is
designed for problems where the reward distribution changes
over time. The second one is a modification that we propose
and where the distribution changes over the number of times
an option is selected.

A. Non-Stationary Bandit Problem

In the non-stationary case under study, the reward distri-
bution of the kth option is given by µk,nk,t

and represents
the expectation of rewards rk,t, where nk,t is the number of
times an option k has been selected after the tth evaluation.
rk,t is the reward of option k obtained at the tth evaluation and
given by ∼ Bernoulli(1, µk,nk,t

), with 1 being the number
of Bernoulli trials.

At each time t ∈ T the agent chooses an option k ∈ K
following a policy π and obtains a reward rk,t. The reward is
modeled from distributions unknown to the user. As such, the
best option after t evaluations is k∗t = argmax

k∈K
µk,t.

The recommendation policy π̃ usually boils down to select-
ing the most played option

k̃t = argmax
k∈K

nk,t,

yet there exist several other recommendation policies[?].
We use Simple Regret as optimization criterion. Simple

Regret is the difference between the average reward of the best
option and the average reward obtained by the recommenda-
tion. As we focus on the non-stationary bandit problem, the
Simple Regret is thus computed by µk∗

T ,T −µk̃t,nk,t
for t ∈ T .

1) UCB-Discounted: UCBdt[?] is an attempt to adapt UCB
to the non-stationary bandit problem. The idea is to partially
forget past information. As such, the estimated value computed
from rewards is changed from:

r̄k,t =

t∑
i=1

rki : ki = k

nk,t
, (1)

to:

r̄k,t =

t∑
i=1

(γt−i · rki
) : ki = k

t∑
i=1

γt−i

where γ ∈ (0, 1] and rkt
is the reward of the selected option

kt obtained at the tth evaluation. Note that if γ = 1 it becomes
a UCB as defined for stationary bandit problems. The πUCBdt

is given by:

argmax
k∈K

(
r̄k,t +

√
C

ln t(γ)

nk(γ)

)
,

where C > 0, nk(γ) =
t∑

i=1

γt−i : ki = k and t(γ) =∑
k∈K

nk(γ). Other padding functions are considered in [?], [?].

The main issue in this definition is that the discount depends
on t rather than nk,t.

2) UCB-Discounted2: We propose a second version of
discounted UCB named UCBdn. UCBdn is similar to UCBdt
but the discount depends on nk,t, the number of time an option
is selected. The idea is still to partially forget past information.
The update rule becomes:

r̄k,t =

nk,t∑
i=1

(γnk,t−i · rki)

nk,t∑
i=1

γnk,t−i

where γ ∈ (0, 1]. πUCBdn is given by:

argmax
k∈K

(
r̄k,t +

√
C

ln t(γ)

nk(γ)

)
,

where C > 0, nk(γ) =
nn,t∑
i=1

γnk,t−i and t(γ) =
∑
k∈K

nk(γ).

III. DIFFERENTIAL EVOLUTION ALGORITHM

To represent a bandit problem into a framework that can be
optimized through an evolutionary approach is far from trivial
and is the subject of Section ??. Section ?? shows the protocol
we use for the evaluation of the fitness and Section ?? presents
a small variation proposed to greatly improve the performance
of DE for bandit problem.

Let f : RK → R be the fitness function to be maximized
where K is the dimension of the problem. The DE algorithm
takes as input a population X of individuals where each
individual x ∈ RK are candidate solutions. The goal can be
viewed as finding a solution s such that ∀ x ∈ RK f(s) ≥
f(x). Indeed this is for a maximization problem and the
solution found is a global maximum. For a minimization, we
can easily consider a fitness h : −f instead. The variable t is
increased every time a function evaluation is performed. The
parameters F ∈ [0, 2], Cr ∈ [0, 1] and |X |, the cardinality of
X , have a large impact on the performance of the optimization.
Thus, the tuning process is an important part of the algorithm.
Algorithm ?? presents our version of the algorithm.

A. Representation

In our DE algorithm, each individual x ∈ X represents a
probability distribution over each option k ∈ K. Obviously,∑
k∈K

xk = 1. These individuals are initialized with random

probabilities as shown in Algorithm ??. Moreover, after each
t ∈ T evaluations we keep in memory r̄, a vector of [0, 1]K ,
representing the different r̄k,t as defined in (??). In this paper,
we add r̄ as an individual in X and is updated at the end of
each generation. In the following Section we further describe
the evaluation of the fitness.

B. Evaluation of the fitness

When evaluating an individual x, we (i) optionally truncate
(see Section ??) and renormalize, (ii) randomly draw an option
k ∈ K (k is selected with probability xk) and (iii) evaluate the
selected option by getting a reward rk,t through t′ Bernoulli
trial(s), where t′ > 0 is the number of re-evaluations.

For the evaluation of the fitness f(x), we decide to compute
it following ∑

k∈K

(xk · r̄k,t).

Note that xk and r̄k,t are two values accessible without any
call to the problem at hand, there is no Bernoulli trial executed
during the fitness evaluation. As such, it does not increment
the evaluation budget t ∈ T .

C. Truncation

In order to make DE more competitive, we propose a
modification similar in its essence to Bernstein pruning[?].
Since the recommendation π̃ consists in choosing only one
option k̃ and we have access to the current approximation
of µk,nk,t

through r̄k,t, we can truncate the options that are
not likely to be recommended. This ensure that DE is solely
focusing on the best options. The rule we used in the algorithm
is given by:

xk =

{
xk if r̄k,t > c1 ·max

k∈K
r̄k,t and nk > c2 ·max

k∈K
nk,t

0 otherwise,

where c1, c2 ∈ (0, 1]. The truncation process is executed
during the normalization process when the current number of
evaluations is bigger than a given M ≥ 0, as described in
Algorithm ??.

IV. EXPERIMENTS

In this section we describe the various experiments. Section
?? defines the non-stationary problem at hand, Section ??
presents the tuning of the UCB variants, Section ?? shows the
tuning of the DE algorithm and finally Section ?? compares
the two algorithms.

A. Non-stationary data

We use a portfolio of solvers over the benchmark Cart-Pole
problem[?] as a testbed. Each option of the bandit problem
represents a black-box Direct Policy Search (DPS)[?]. More
specifically for our case, we focus on three variants of black-
box Noisy Optimization Algorithms (NOAs) combined with
Neural Network (NN) (1, 2, 4, 6, 8 and 16 neurons). The
three black-box NOAs are:
• a Self-Adaptive (µ, λ) Evolution Strategy with resam-

plings (RSAES)[?];
• a Fabian’s stochastic gradient algorithm with finite

differences[?], [?], [?];
• and a variant of Newton algorithm, adapted for noisy

optimization, with gradient and Hessian approximated
by finite differences and resamplings[?], termed Noisy
Newton.

Algorithm 2 DE/best/1

Require: K: Dimension
Require: T : Computational budget
Require: Truncation: 1 if truncated, 0 otherwise
Require: M : Threshold if truncated
Require: |X |: The size of the population X

Initialize each x ∈ X randomly ∈ (0, 1)K

Normalize the values xk∈K
Initialize t← 1
Compute f(x) for each x ∈ X
Set a : f(a) ≥ f(x) ∈ X
while t ≤ T do

if Truncation and t > M then
Execute truncation

end if
for each x ∈ X do

Evaluate x t′ times
t← t+ t′

Pick randomly 2 distinct individuals b and c from X
Pick a random index R ∈ K
Get a new position y for the individual x as follows:
for each k ∈ K do

Pick a random number rand ≡ U(0, 1)
if rand < Cr or k == R then

Set yk = ak + F (bk − ck)
else

yk = xk
end if

end for
Normalize the values yk, ∀k ∈ K
Compute f(y)
if f(y) > f(x) then

replace x by y
end if
if f(x) > f(a) then

replace a by x
end if

end for
end while
Pick the agent x̃ ∈ X using recommendation policy
Return k̃

Basically at iteration n, the NOA chooses one (or more)
new point(s) zn in the search domain and gets a reward rk,t.
RSAES and Noisy Newton use resamplings, i.e. re-evaluations,
to reduce the noise. Note that the budget is consumed ac-
cordingly with the number of resamplings. Table ?? describes
the specifics of the NOAs that we use in our experiments.
λI represents the number of points selected (more generally
termed individuals size) during one iteration, rn is the number
of resamplings of each individual and σn is the stepsize. We
refer to [?] for more details on the settings and the different
algorithms. As shown in Table ??, 24 solvers are used to
resolve the Cart-Pole problem, thus resulting in 24 options in

TABLE I: Solvers used in the experiments, where d is dimension depending on the number of neurons; rn is resampling
number at iteration n for each individual. We refer to [?] for more details.

Number of neurons Algorithm and parametrization
1, 2, 4, 6, 8, 16 RSAES with individual size λI = 10d, µ = 5d, rn = 10n2.
1, 2, 4, 6, 8, 16 Fabian’s solver with individual size λI = 4, stepsize σn = 10/n0.1, a = 100, no resamplings.
1, 2, 4, 6, 8, 16 Noisy Newton’s solver with individual size λI = 4d2 + 2d+ 1, stepsize σn = 10/n, rn = n2.
1, 2, 4, 6, 8, 16 Noisy Newton’s solver with individual size λI = 4d2 + 2d+ 1, stepsize σn = 100/n4, rn = n2.

the non-stationary bandit problem. Experiments are repeated
50 times and we present the mean of these results.

B. Tuning of bandit

In this section we present the tuning of the different UCBs
under study. For the baseline UCB, the only parameter to
tune is the C constant, which control the tradeoff between
exploration and exploitation. Figure ?? presents a summary
of the best combinations of parameters. The x-axis represents
the number of evaluations and the y-axis shows the Simple
Regret. For each point in Figure ??, 50 independent trials are
executed and we present the mean of these results.

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of evaluations

S
im

p
le

 R
e

g
re

t

UCB−MPA:C=0.1

UCB−MPA:C=1

UCB−MPA:C=2

UCB−MPA:C=20

UCB−MPA:C=200

C=1

C=20

C=200

C=2

C=0.1

Fig. 1: Simple Regret for UCB. Tested parameters are C ∈
[10−3, 200]. For the clarity of graph, we remove some similar
results and only show results for C = 0.1, C = 1, C = 2,
c = 20 and C = 200. UCBdn converges faster and depends
less on C than UCB or UCBdt. The recommendation policy
π̃ is Most Played Arm (MPA), where arm refer to option in
our paper.

UCB does not possess the inherent quality to tackle non-
stationary bandit problem. Instead, to artificially induce the
ability to keep adapting to the variation in the distributions
we expect higher exploration rate C. This is exactly what we
observe in Figure ?? where the best C constant is 200 when the
number of evaluations is below 7×104 and diminishes to 20 as
the number of evaluations increases. This value is much higher
than on stationary problem where typical empirical values are
usually within [0, 2].

For UCBdn and UCBdt, we look for the best combination
of parameters C and γ. Figure ?? presents different C values
for the best γ = 0.85 found for UCBdn (Top) and the best
γ = 0.99 found for UCBdt (Bottom). The rest of the setting
is similar to Figure ??.

The best combination of parameters for UCBdn seems to be
in the vicinity of C = 2 and γ = 0.85 for the given problem.
The current γ value indicates that a fair amount of information
is lost at each iteration but it is combined with a relatively
small exploration factor C = 2. As opposed to UCBdn, UCBdt
possesses a very high value for γ and C. Its best γ seems to
indicate that UCBdt does not rely on forgetting information
throughout the iterations. As such, it is conceivable that it
relies on a higher exploration factor C. It appears that because
UCBdt has a forget rate that is not related with the way the
distributions evolve its best combination of parameters boils
down to almost a normal UCB.

From Figure ??, it clearly appears that UCBdn is the best
variant of UCB for the settings describe in this paper.

C. Tuning of DE

In this section we tune different variants of DE and compare
them. There are 3 parameters to tune for DE and its variants:
λ, F and Cr. Different settings of F ∈ [0, 2] and Cr ∈ [0, 1]
are presented in combination with the 2 best population sizes
that are found which are λ = 5 and λ = 10.

Figure ?? shows average performance of DE in terms of
Simple Regret. The x-axis represents the number of evalua-
tions and the y-axis shows the Simple Regret. For each point
in Figure ??, 50 independent trials are executed and we present
the mean of these results.

First, it seems that a smaller population yields better per-
formance. It is understandable since each particle consumes
part of the evaluation budget and does not directly share
information between them. As such, there is a loss in the
efficiency of sampling which increases as the size of the
population grows. The best parameter setting for λ = 10
(Bottom) is F = 0.1 and Cr = 0.7, that is a relatively small
differential weight F that prevents the distribution to move
too fast in a direction but with a relatively high crossover
probability Cr. For λ = 5 (Top), the combination F = 0.1
and Cr = 0.7 still yields good results but there exists several
other combinations that give similar results. After 9 × 104

evaluations, none of the combination of F and Cr for a λ = 10
reaches a simple regret lower than 0.5 whereas for the same
number of evaluations, the combination λ = 5, F = 0.1 and
Cr = 0.7 reaches 0.23.

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of evaluations

S
im

p
le

 R
e

g
re

t

UCBdn−MPA:C=0.1

UCBdn−MPA:C=1

UCBdn−MPA:C=2

UCBdn−MPA:C=20

UCBdn−MPA:C=200

C=2

C=0.1

C=1

C=200

C=20

(a) UCB discounted2 (UCBdn) with γ = 0.85.

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of evaluations

S
im

p
le

 R
e
g
re

t

UCBdt−MPA:C=0.1

UCBdt−MPA:C=1

UCBdt−MPA:C=2

UCBdt−MPA:C=20

UCBdt−MPA:C=200

C=0.1

C=20

C=2

C=200

C=1

(b) UCB discounted (UCBdt) with γ = 0.99.

Fig. 2: Top: UCBdn performance with γ = 0.85; Bottom:
UCBdt performance with γ = 0.99. Several values of γ and
C are tested for UCBdn and UCBdt, we remove some results
for the clarity of graphs. Only the best parameterization of γ
are presented. UCBdt relies on a higher exploration factor C.
UCBdn depends less on C and converges faster than UCBdt
using the same constant C.

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of evaluations
S

im
p

le
 R

e
g

re
t

F=0.1,Cr=0.7
F=0.1,Cr=0.4
F=0.1,Cr=0.1
F=0.4,Cr=0.9

F=0.1,Cr=0.4

F=0.1,Cr=0.1

F=0.1,Cr=0.7

F=0.4,Cr=0.9

(a) Normal DE, λ = 5.

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of evaluations

S
im

p
le

 R
e

g
re

t

F=0.1,Cr=0.7
F=0.1,Cr=0.4
F=0.1,Cr=0.1
F=0.4,Cr=0.9

F=0.1,Cr=0.7

F=0.1,Cr=0.1

F=0.1,Cr=0.4

F=0.4,Cr=0.9

(b) Normal DE, λ = 10.

Fig. 3: Performance of different variants of DE in terms of
Simple Regret. Number of options K = 24, population size
λ = 5 (Top) and λ = 10 (Bottom). Here we only show a
summary of results for the parameters. When F = 0.1, bigger
Cr gets better performance. Normal DE can not converge
when near to optimum, which is to be expected from an
evolutionary algorithm.

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of evaluations

S
im

p
le

 R
e

g
re

t

DE:F=0.1,Cr=0.7
DEt:M=0
DEt:M=500
DEt:M=1000
DEt:M=2000

M=1000

M=0

DE

M=2000

M=500

(a) Truncated-DE compared to normal DE, λ = 5.

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of evaluations

S
im

p
le

 R
e

g
re

t

DE:F=0.1,Cr=0.7
DEt:M=0
DEt:M=500
DEt:M=1000
DEt:M=2000

M=2000

DE

M=1000

M=0

M=500

(b) Truncated-DE compared to normal DE, λ = 10.

Fig. 4: Performance of different variants of DE in terms of
Simple Regret. Number of options K = 24, population size
λ = 5 (Top) and λ = 10 (Bottom). Here we only show a
summary of results for the parameters. Black solid curve is the
best DE found in Figure ??. Truncated-DE clearly outperforms
the normal DE. M influences slightly on the convergence rate.

Figure ?? presents performance in terms of simple regret for
different values of M for the truncated variant of DE presented
in Section ??. We used c1 = 0.7 and c2 = 0.7. The rest of
the settings are similar to Figure ??.

To facilitate the comparison of performance between normal
DE and the truncated variant, we also plot the best normal
DE found (λ = 5, F = 0.1, Cr = 0.7). Every tested variant
of the truncated version outperform the normal DE. The best
truncation factor for a population size λ = 10 appears to be
M = 0 which indicates that early truncation are better.

From Figure ??, it clearly appears that smaller population
size λ yields better results which is in line with previous
findings. For a population size λ = 5, the best value of M
is 500 in early iterations (< 9 × 104) and, as the number
of evaluations grows (> 9 × 104) the best M is 2 000.
These results indicates that truncating early yields good results
yet if the budget is large enough it is better to gather more
information before starting the truncation process.

D. DE vs Bandit

This section compares the best UCBs with the best variants
of DE. It is important to note that each algorithm are tuned
individually instead of using generic constant for a family of
algorithms. In this section, we also add another baseline which
consists in choosing an option randomly and always pulling
the same one. We call this baseline Random.

Figure ?? shows the average performance in terms of Simple
Regret of the best UCBs and DEs. The x-axis represents the
number of evaluations and the y-axis shows the Simple Regret.
For each point, 50 independent trials are executed and we
present the mean of these results. Standard deviation for each
curve is of order of magnitude of 0.015.

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of evaluations

S
im

p
le

 R
e
g
re

t

Random

UCB

UCBdn

UCBdt

DEt:λ=5

DEt:λ=10

DEt:λ=5

Random

UCBdn

UCBdt

DEt:λ=10

UCB

Fig. 5: Comparison of truncated-DE, UCB, UCBdn, UCBdt
and Random. UCBdn outperforms UCB and UCBdt and is
clearly the best algorithm if the budget is small. However,
as the number of evaluations grows (5.7 × 104), truncated-
DE gets better (smaller) Simple Regret. Standard deviation
for each curve is of order of magnitude of 0.015.

Given a decent number of evaluations, every algorithm
outperforms the baseline Random. As expected, the best of
the UCB variant (UCBdn) is the best algorithm up to a budget
of 5.7 × 104. Afterward, truncated-DE for λ = 5, M = 500
is the best available algorithm.

There are two important conclusions that we can infer
from these experiments. First, the variant of UCB (UCBdn)
presented in this paper is the best UCB algorithm for non-
stationary bandit problem where the distribution varies with

the number of times an option is selected. Second, Evolu-
tionary Algorithm such as DE, given some adaptation, can
outperform bandit specific algorithms on bandit problem.

V. CONCLUSION

In this paper, we compare an evolutionary algorithm, namely
DE, to bandit algorithms on a black-box portfolio selec-
tion problem. Such problems can be formalized into a non-
stationary bandit problems, where each option increases their
performance as the number of times we evaluate it increases.

First, we introduce our definition of the non-stationary
bandit problem and justify such an approach through a direct
application (portfolio of solvers for the Cart-Pole problem).
Second, we present the current state-of-the-art bandit algo-
rithms for the given problems and propose our own variant
(UCBdn) that outperforms all the other UCB-like algorithm on
non-stationary distributions where each distribution changes
according to the number of times the option is selected.

Third, we introduce DE, an evolutionary algorithm, and
apply it over this specific non-stationary bandit problem. We
also present our own variant of DE which outperforms the
classic version.

Fourth and last, we compare the best variant of each
category (UCBdn and truncated-DE). If the budget is smaller
than 5.7 × 104 we propose the use of UCBdn and, as the
number of evaluations increases, truncated-DE is better.

For future research, we intend to apply truncated-DE on a
wider range of problems. Moreover, we would like to explore
the idea of generic parameter tuning in the case of DE. As for
the bandit algorithm part, to compute theoretical bound for
UCBdn would provide interesting information on its generic
performance.

ACKNOWLEDGMENT

This work is supported by the ADEME POST project. The
authors would like to thank the reviewers for their comments.

