The Single-Player GVGAI Learning Framework
Technical Manual

Jialin Liu!, Diego Perez-Lebana?, and Simon M. Lucas!

1School of Electrical Engineering and Computer Science, Queen Mary University of London,
London E1 4NS, United Kingdom
1School of Electrical Engineering and Computer Science, Queen Mary University of London,
London E1 4NS, United Kingdom
2School of Computer Science and Electrical Engineering, University of Essex, Colchester
CO4 35SQ), United Kingdom

Last update: November 2017

Contents
I Overviewl

2 General Video Game Al framework and competitions|

13 Installing and run|
8.1 Requirements and supports| 0L

3.3 Java agent: build and run a sample agent|
3.3.1 Step-by-step using IntelliJ| 0.
3.3.2 tep-by-step using Eclipsel 0000
[3.4 Python agent: build and run a sample agent|.
13.4.1 Step-by-step using IntelliJ|
3.4.2 Step-by-step using Eclipse|o
[3.5 Build and run an agent without IDE|
3.5.1 Build and run a Java agent|
3.9.2 uild and run a Python agent|
3.6 Advanced parameter settings|
8.6.1 Legal arguments|
B.6.2 Run with IDElo o oo

4 Single-player learning framework|
4.1 Parametersl oo
4.2 Implement an agent|
4.3 Learning and validation phases|
4.3.1 Learning phase|o
4.3.2 Validation phase| o0
4.4 Sample agents|. Lo

[6Single-player learning competition|
[o.1 _Competition process|

5.2 valuationof agents|o,

6.3 Submission guidelines|

6 Future workl

|IA° Example of serialised game observation|

B Example of game output|

13
13
14
14
15
15

15

16

18

Disclaimer and Acknowledgement

The Learning Track framework is based on the General Video Game Al frame-
work. The implementation and testing of the Learning Track framework are
joint work with Dr. Diego Perez-Liebana and Daniel-Valentin Ionita (Univer-
sity of Essex, UK). Prof. Simon Lucas (Queen Mary University of London,
UK) and Prof. Julian Togelius (New York University, USA) provided valuable
suggestions and technical support.

Thanks to Erciiment Ilhan (Istanbul Technical University, Turkey) and Kamol-
wan Kunanusont (University of Essex, UK) for having provided sample agents
written in Python and Java.

Thanks to Qi Zhang (National University of Defence Technology, China) for
testing the framework under Windows system.

Thanks to Alexander Dockhorn (Otto-von-Guericke University, German) for
providing valuable feedback.

1 Overview

This technical manual describes how to set up the Single-Player General Video
Game AI (GVGAI) Learning framework, how to implement an agent, the com-
petition process and submission guidelines. Section [2] briefly introduces the
GVGALI framework and competitions. Section [3] gives step-by-step instructions
for setting up the single-player GVGAI learning framework and running a sam-
ple agent. Section [4] details the framework and the technical requirements to
implement a learning agent. Section [p| explains how to submit an agent to the
competition.

Note that some of the guidelines or values for parameters are only for sub-
missions to the competition. For research use, you do not need to respect them,
and you can easily change some of the parameters (see more in Section .

2 General Video Game Al framework and com-
petitions

Two main research questions in games to answer are can an Al program solve a
particular difficult game and can an Al program solve a (large) set of different
games? There has been research work and competitions around the former one,
such as the Computer Game Olympia. We aim at answering the latter using
the General Video Game AI (GVGAI) as benchmark problems.

The General Video Game Al (GVGAI) frameworkﬂ was initially designed
and developed by the University of Essex (UK) and New York University (USA),
aiming at using as a research and competition framework for studying General
Game Playing (GGP). Though it is called GVGAI, some board games are in-
cluded in the game sets. When it was firstly announced, there was only the
single-playing planning track [3]. In the following years, the framework has
been improved and extended to hold two-player planning track, level genera-
tion track and rule generation track. The games were written in Video Game
Description Language (VGDL) [I],], the framework was written in Java and
only accept submissions written in Java until the framework has been extended
again to hold the single-player learning track in the IEEE’s 2017 Conference on
Computational Intelligence in Games (CIG17) [2].

More about the competitions can be found on the GVGAI website. The
following section mainly explains the procedure in the single-player learning
competition.

3 Installing and run

3.1 Requirements and supports

System GVGALI can be built and run on Unix, Mac OS X, and Windows.

Thttp://www.gvgai.net/

http://www.gvgai.net/

Gson Gson is required but it is already included in the source code.

Language It supports agents written in Java or Python. The Python client
has been tested with Python3.5.

Communication At every game tick, the agent can send a game action
(String) or a command (String) to exit a game, and can choose either or
both formats of the game station observation listed below

e a serialised JSON game observation (String)
e a screenshot of the game screen (PNG).

The choice can be changed at every game tick or at the beginning or end of a
game playing. More can be found in Section 4.2

Remark: Though there is a communication between the server and client,
there is no need to run the server separately, it will be compiled and run au-
tomatically when you compile and run an agent using the provided scripts.
For each of the scripts, two formats are provided for Windows (bat) and non-
Windows users (sh).

3.2 Download

The compressed source code can be download from GitHub E| (master), then
unzipped manually to repository named gvgai. It can also be clone by: git
clone https://github.com/EssexUniversityMCTS/gvgai.git

We will assume that the GVGAI framework is extracted to gvgai and we
highly recommend not to change the name of the repository as it will require
changes in the bat/shell scripts.

The single- / two-player planning and single-player learning competitions
use the same framework, thus the single-player learning framework is included
in gvgai. However, the setting is slightly different when importing the project
using IDEs, as detailed in the Sections [3.3] and [3:4]

3.3 Java agent: build and run a sample agent
3.3.1 Step-by-step using IntelliJ

Import the project Launch the IDE, import the project GVGAI-JavaClient.
Remark: Please import the client not the whole project gugaz.

Set your own Java agent (optional) If you want to use your own agent, you
can change the name of agent in TestLearningClient.java. Otherwise, the
sample random agent sampleRandom/Agent.java will be used. More advanced
settings are explained in Section

2 https://github.com/EssexUniversityMCTS/gvgai

https://github.com/EssexUniversityMCTS/gvgai

Run an agent Compile and run TestLearningClient. java in the package
gvgai/GVGAI-JavaClient/src. It will compile the server, build the communi-
cation and launch the program. The output of the client will be shown on the
console, while the output of the server will be logged in the logs/ folder:

e output_server redirect.txt for stdout,
e output_server redirect_err.txt for stderr.

The agent will run on a given game (by default Aliens) with 5 minutes learning
time.

3.3.2 Step-by-step using Eclipse

The basic steps are same as using IntelliJ, except that the build folder is not
out but bin. You need to replace out by bin in
GVGAI-JavaClient/src/utils/runServer nocompile.sh

3.4 Python agent: build and run a sample agent
3.4.1 Step-by-step using IntelliJ

Import the project Launch the IDE, import the project GVGAI-PythonClient.
Remark: Please import the client not the whole project gugat.

Set your own Python agent (optional) If you want to use your own agent,
you can pass the name of agent as a parameter to TestLearningClient.py
in gvgai/clients/GVGAI-PythonClient/src. Otherwise, the sample random
agent sampleRandom/Agent.py will be used.

Run an agent Compile and run TestLearningClient.py in the package
gvgai/clients/GVGAI-PythonClient/src. It will compile the client, build
the communication and launch the program. The output of the client will be
shown on the console, while the output of the server will be logged in the logs/
folder:

e output_server _redirect.txt for stdout,
e output_server_redirect_err.txt for stderr.

The agent will run on a given game (by default Aliens) with 5 minutes learning
time.

3.4.2 Step-by-step using Eclipse

The basic steps are same as using IntelliJ, except that the build folder is not
out but bin. You need to replace out by bin in
GVGAI-PythonClient/src/utils/runServer_nocompile_python.sh.

3.5 Build and run an agent without IDE
3.5.1 Build and run a Java agent

Run oneclickRunFromJavaClient.sh or oneclickRunFromJavaClient.bat.

3.5.2 Build and run a Python agent

Run oneclickRunFromPythonClient.sh or oneclickRunFromPythonClient.bat.

3.6 Advanced parameter settings

A list of games have been given in folder gvgai/examples/gridphysics. The
names of games are listed in
gvgai/src/tracks/singlelearning/TestSingleLearning. java.

3.6.1 Legal arguments

You can pass arguments to your client. The legal ones are listed below:

e -serverDir [PathToServerCode]: Where the source folder of the server
code locates. Default: ..\..\.. for Windows system or ../../.. for
OS X and Unix.

e —shDir [PathToTheScriptToBuildServer]: Where the script to build
and run the server locates. Default: utils.

o —gameIld [Id0fGameToPlay]: The id of the game to play. Default: 0.

e -agentName [NameOfAgentToRun]: The name of your agent, should be
the same to the package name and your GVGAI account username. De-
fault: sampleAgents.Agent for Python and agents.random.Agent for
Java.

e -visuals Visualisation of game playing on if this is passed. Otherwise,
visualisation off.
3.6.2 Run with IDE

One can set the game to play and the agent to use by editing TestLearningClient. java
or TestLearningClient.py, or by passing arguments to the executable file, oth-
erwise the default values will be used. More can be found in the source files.

3.6.3 Run without IDE

One can set options by editing the oneclickRunFromJavaClient.sh/.bat or
oneclickRunFromJavaClient.sh/ .batEl

3The scripts only include basic usages and arguments for demonstration, please feel free
to create your own.

Python client In oneclickFromPythonClient.bat/.sh:
python TestLearningClient.py -serverDir [PathToServerCode]
-shDir [PathToTheScriptToBuildServer]
-gameId [Id0fGameToPlay] -agentName [NameOfAgentToRun] [-visuals]

Java client In oneclickFromJavaClient.sh:
java -classpath $build_folder TestLearningClient -serverDir [PathToServerCode]
-shDir [PathToTheScriptToBuildServer]

-gameId [Id0fGameToPlay] -agentName [NameOfAgentToRun] [-visuals]

Java client (Window user) In oneclickFromJavaClient.bat:
java -cp %build_folder), TestLearningClient -serverDir [PathToServerCode]
-shDir [PathToTheScriptToBuildServer]

-gameId [Id0fGameToPlay] -agentName [NameOfAgentToRun] [-visuals]

3.7 Possible issues and solutions

java.net.BindException: Address already in use (Bind failed)? Maybe
another process is already running at that port. In Unix, check: lsof -i
tcp:<port>

If the connection hangs Please check if the default port 8080 is already
being used. If yes, please try another one by editing both SOCKET_PORT in
CompetitionParameters. java and SOCKET_PORT in CompetitionParameters.py
or CompetitionParameters. java.

Path to client code If you move the GUGAI-JavaClient project to another
folder, please change the path to the build and source folders in runClient _nocompile.bat
or runClient nocompile.sh.

Attention: This will affect the location of the output file ClientLog. tzt (see
GVGAI-JavaClient/src/utils/I0. java).

(Windows user) FileNotFound exception for logs/ClientLog.txt Please
create manually a folder namely logs. Normally, the logs folder has been created
and added to Git.

(Windows user) Path to SDK You may need to edit runClient nocompile.bat
to specify the path to the sdk.

(Windows user) If you run a Java client and it hangs If you fail
with this, please check if the path to javac is set, please refer to |javac-isnt-
working-in-windows-command-promptl If it still hangs, please try to run it using
oneclickRunFromPythonClient.sh or oneclickRunFromPythonClient.bat. It
has been observed that in Windows 7, the oneclickRunFromPythonClient.bat
works but under Eclipse it does not work properly.

https://stackoverflow.com/questions/17665342/javac-isnt-working-in-windows-command-prompt
https://stackoverflow.com/questions/17665342/javac-isnt-working-in-windows-command-prompt

Planning tracks
Single-Player Two-Player
e Play unseen games, no game rules available

Single-Player Learning

Similarities e Access to game score, tick, if terminated
e Access to legal actions
e Access to observation of current game state
Forward model? Yes No
History events? Yes No
. Yes Serialised SO
State Observation? Java Java &Python

Table 1: Comparison of the planning and learning tracks.
A Q&A page can be found in the wiki of GVGAL

4 Single-player learning framework

The single-player learning framework is part of the GVGAI framework. Different
from the planning tracks, no forward model is given to the controllers, thus, no
simulation of games is accessible. Table [I| compares the single-player planning
and learning tracks. An example of the serialised state observation is given in
Appendix and a screenshot of the game screen are given in Figure

4.1 Parameters

Before explaining the main procedure of the single-player learning competition,
the notations and corresponding variables in the framework are listed below:

4.2 Implement an agent

A Java or Python agent should inherit from an abstract class AbstractPlayer,
implement the constructor and three methods, act, init and result. The class
must be named Agent. java or Agent.py.

constructor is called once per game and must finish in no more than START_TIME
(by default 1s) of CPU time, thus it is called once during the learning and val-
idation phases of each game.

public class Agent extends utils.AbstractPlayer {

/k*
* Set the format of serialised StateObservation to receiwve.
* lastSsoType can be reset at anytime
*/
public Types.LEARNING_SSO_TYPE lastSsoType
= Types.LEARNING_SSO_TYPE.JSON;

https://github.com/EssexUniversityMCTS/gvgai/wiki/Q&A-of-Single-Player-Learning-Track

Parameters for client (agent)

Variable Default value Usage
START_TIME 1s Time for agent’s constructor
INITIALIZATION_TIME 1s Time for init ()
ACTION_TIME 40ms Time for returning an action per tick
ACTION_TIME DISQ 50ms Threshold for disqualification per tick
TOTAL_LEARNING_TIME Smin Time allowed for learning a game
EXTRA_LEARNING_TIME 1s Extra learning time
SOCKET_PORT 8080 Socket port for communication
Parameters for server
Variable Default Usage
MAX_TIMESTEPS 1000 Maximal game ticks a game can run

VALIDATION_TIMES 10 Game repeating time during validation

Table 2: The main parameters are defined and initialised in
the class CompetitionParameters.py for the Python client
or CompetitionParameters.java for the Java client, and

core.competition.CompetitionParameters. java for the server.

/¥ ok
* Constructor
* To be called at the start of the communication.
* No game has been initialized yet.
* Perform one-time setup here.
*/
public Agent (){

}

init is called at the beginning of every game playing. It should finish in no
more than INITIALIZATION_TIME (by default 1s) of CPU time.

public class Agent extends utils.AbstractPlayer {

/¥ *
* Public method to be called at the start of every level of a game.
* Perform any level-entry initialization here.
* @param sso Phase Observation of the current game.
* O@param elapsedTimer Timer (1s)
*/
@0verride
public void init(SerializableStateObservation sso,
ElapsedCpuTimer elapsedTimer) {

act At each game tick of a game playing, is called and determines the next
action of the agent within the prescribed CPU time ACTION_TIME (by default
40ms). The possible actions are ACTION_LEFT, ACTION RIGHT, ACTION_UP,
ACTION_DOWN, ACTION_USE and ACTION NIL (do nothing). The controller will
be disqualified immediately if more than ACTION_-TIME_DISQ (by default 50ms)
is taken. Otherwise, an NIL action (do nothing) is applied.

Remark: It’s possible that in a game or at a game state, not all the actions
listed above are available (legal) actions, but ACTION_NIL is always available.

public class Agent extends utils.AbstractPlayer {

Method used to determine the next move to be performed by the agent.
The agent can ABORT the current game at anytime.

@param sso Observation of the current state of the game
@param elapsedTimer Timer (40ms)
@return The action to be performed by the agent.

@0verride
public Types.ACTIONS act(SerializableStateObservation sso,
ElapsedCpuTimer elapsedTimer){

result is called at the end of every game playing. It has no time limit, in
other words, the controller doesn’t get penalized for overspending other than
the TOTAL_LEARNING_TIME. The controller can play with the time it spends on
the result call to do more learning or to play more games.

public class Agent extends utils.AbstractPlayer {

/%
* Method used to perform actions in case of a game end.
* This 1s the last thing called when a level s played.
* Called at the end of every level.
*
* @param sso The current state observation of the game.
* @param elapsedTimer Timer (5min + 1s)
* @return The next level of the current game to be played.
*/
@0verride

public int result(SerializableStateObservation sso,
ElapsedCpuTimer elapsedTimer){

10

Scenario Return Default
ACTION_LEFT
ACTION_RIGHT

ACTION_UP
Return by act ACTION_DOWN ACTION_NIL
ACTION_USE
ACTION_NIL
ABORT
Return by results - % 1 and 2 after the first and
. . gnored . .
during learning phase 1 second game playing respectively
0
du]":r{ier%1 Iirelall? iﬁg sp%g'sse 2 1 Randomly chosen from {0, 1,2}
2
Return by results “Ignored* 3 and 4 repeatly

during validation phase

Table 3: Legal messages for communication between server and client in different
scenarios.

Figure 1: Example of a screenshot of the game screen.

Return At each call of act and result, an action or a level number should
be returned. The legal returns for different scenarios are listed in Table

State Observation At any scenario, the agent change select the format of
game observation to receive at next game tick(s) using one of the follows

e lastSsoType = Types.LEARNING_SSO_TYPE.JSON; // for receiving JSON

e lastSsoType = Types.LEARNING_SSO_TYPE.IMAGE; // for receiving a screen-
shot of the game screen

e lastSsoType = Types.LEARNING SSO_TYPE.BOTH; // for receiving both

The choice will be remembered until the agent makes another choice using the
above commands. An example of the screenshot is given in Figure [1] and An
example of the serialised state observation are given in Appendix [A]

11

Learning
Phase 2

EVaIidationé

Figure 2: Learning and validation phase for one game in the single-player learn-
ing competition. In the competition, an agent will be executed on a set of
(usually 10) unknown games, thus this process will repeat 10 times.

Termination A game playing terminates when the player wins / loses the
game or the maximal game ticks (MAX_TIMESTEPS, 1,000 by default) is reached.

Time out If the agent returns an action after ACTION_TIME but no more than
ACTION_TIME_DISQ (set to 50ms in the competition), then the action ACTION_NIL
will be performed.

Disqualification If the agent returns an action after ACTION_TIME_DISQ, the
agent is disqualified and loses the game.

4.3 Learning and validation phases

Each game has 5 levels, indexed by Level 0, Level 1, Level 2, Level 3 and Level
4 in Figure[2] Execution for one game in a set would have two phases: learning
phase and wvalidation phase.

The objective is to win a game as many time possible and get highest score
possible during the validation phase (Levels 3 and 4).

4.3.1 Learning phase

An agent has a limited time TOTAL_LEARNING_TIME (by default 5min) in total
for both learning phases 1 and 2. The communication time is not included by
Timer. In case that TOTAL_LEARNING_TIME has been used up, the results and

12

observation of the game will still be sent to the agent and the agent will have
no more than 1 second before the validation.

e Learning phase 1: The agent plays once Levels 0, 1 and 2 sequentially. At
the end of each level, whether the game has terminated normally or the
agent forces to terminate the game, the server will send the results of the
(possibly unfinished) game to the agent.

e Learning phase 2: (Repeat until time up) After having finished Learning
phase 1, the agent is free to select the next level to play (from Levels 0,
1 and 2) by calling the method int result() (detailed in Section [1.2)).
If the selected level id is not among 0, 1 and 2, then a random level id
will be passed and a new game will start. This step is repeated until
TOTAL_LEARNING_TIME has been used.

4.3.2 Validation phase

The agent repeats playing VALIDATION_TIMES times the Levels 3 and 4 sequen-
tially. There is no more total time limit, but the agent respects the time limits
for init, act and result, and can continue learning during the game playing.

4.4 Sample agents

Two Java sample agents are provided by Kamolwan Kunanusont (University
of Essex, UK), named kkunan and DontUnderestimateUchiha in the directory
gvgai/clients/GVGAI-JavaClient/src/. A Python sample agent is provided
by Erctiment [lhan (Istanbul Technical University, Turkey), named ercumentilhan
in the directory gvgai/clients/GVGAI-PythonClient/src/.

5 Single-player learning competition

5.1 Competition process

In each of the learning/validation/test game sets of the competition, 10 un-
known games will be provided and each game has 5 levels, indexed by Level 0,
Level 1, Level 2, Level 3 and Level 4 in Figure

An agent has a limited time (TOTAL_LEARNING_TIME) in total for both learn-
ing phases 1 and 2 for each of the game. The communication time is not included
by Timer. In case that TOTAL_LEARNING_TIME has been used up, the results and
observation of the game will still be sent to the agent and the agent will have
no more than 1 second before the validation.

The agent aims at maximising the average game score obtained during the
validation phase over the 10 unknown games.

13

Training set Test set

2?27

4 4 @&

Figure 3: Training and test sets of games.

5.2 Evaluation of agents

Each agent will play on a set of unknown games (usually 10 games). The results
on levels 3 and 4 during validation phase are used for evaluation, including

e the number of victories
e average score
e time spent (game ticks)

The submitted agents and sample agents are ranked and awarded with points:
25, 18, 15, 10, 8, 6, 4, 2, 1. The final ranking is determined by adding all points
across all games.

All participants are invited to submit their agents to some given sets of
games, observe the results, and re-submit some improved agents accordingly.
When the submission is closed, no more update on submitted agents is possible.
The current agents will play on another set of unknown games, called test set,
following exactly the same learning and validation phases (cf. Figure [3)).

5.3 Submission guidelines

The submission link can be found on the GVGAI website. Registration is re-
quired.

If submitting to the competition, the class of your agent should locate in
a package with the same as the username you used to register to the website
(this is in order to allow the server to run your controller when you submit),
otherwise the package name does not matter.

Example If I have created an account named “jialin” for submitting a Java

agent, then the agent should locate in gvgai/clients/GVGAI-JavaClient/src/jialin
for local testing. You will submit a zip file named jialin.zip. After unzipping,

a folder named jialin contained Agent. java should appear.

14

5.3.1 Java client

The package gvgai/clients/GVGAI-JavaClient contains all the necessary classes
for client, including the communication via sockets and a sample random agent.
You can create an agent by creating a class that inherits from AbstractPlayer. java.
This class must be named Agent. java. During testing, the package can be lo-
cated in gvgai/clients/GVGAI-JavaClient/src.

5.3.2 Python client

The package gvgai/clients/GVGAI-PythonClient contains the all the neces-
sary classes for client, including the communication via sockets and a sample
random agent. You can create an agent by creating a class that inherits from
AbstractPlayer.py. This class must be named Agent.py. During testing, the
package can be located in gvgai/clients/GVGAI-PythonClient/src.

6 Future work

The main work in the future is to provide a better learning agent which outper-
forms random playing.

If you see a bug or potential improvement in the framework, please email to
gialin. liu@gmul. ac.uk with “{GVGAILearning]” in the subject of the email.

References

[1] Marc Ebner, John Levine, Simon M Lucas, Tom Schaul, Tommy Thompson,
and Julian Togelius. Towards a video game description language. In Dagstuhl
Follow-Ups, volume 6. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2013.

[2] Jialin Liu. GVGAI Single-Player Learning Competition at IEEE CIG17.
2017.

[3] Diego Perez-Liebana, Spyridon Samothrakis, Julian Togelius, Tom Schaul,
Simon M Lucas, Adrien Couétoux, Jerry Lee, Chong-U Lim, and Tommy
Thompson. The 2014 general video game playing competition. IEEE Trans-
actions on Computational Intelligence and Al in Games, 8(3):229-243, 2016.

[4] Tom Schaul. A video game description language for model-based or inter-
active learning. In Computational Intelligence in Games (CIG), 2013 IEEE
Conference on, pages 1-8. IEEE, 2013.

15

mailto:jialin.liu@qmul.ac.uk

A Example of serialised game observation

SerializableStateObservation {
phase=ACT, isValidation=false,
worldDimension=[230.0, 200.0],
avatarPosition=[175.0, 180.0],
avatarMaxHealthPoints=3,

gameScore=8.0,
blockSize=10,

avatarLimitHealthPoints=3,

availableActions =[ACTION_USE, ACTION_.LEFT, ACTION_RIGHT],

observationGrid={

Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category=6,
Observation{category=6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category=6,
Observation{category=6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category=6,
Observation{category=6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category=6,
Observation{category=6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category=6,
Observation{category=6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category=0,
Observation{category=6,
Observation{category =6,
Observation{category =6,
Observation{category =0,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category=6,
Observation{category=6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,

itype=0,

obsID=578,
obsID =624,
obsID =649,
obsID =674,
obsID=710,
obsID =746,
obsID =782,
obsID =807,
obsID =832,
obsID =857,
obsID =882,
obsID =907,
obsID =932,
obsID =957,
obsID =982,
obsID=1007,
obsID=1032,
obsID=1057,
obsID=1082,
obsID=1108,
obsID =580,
obsID=676,
obsID=712,
obsID =748,
obsID =582,
obsID =678,
obsID =750,
obsID =584,
obsID=715,
obsID =586,
obsID =681,
obsID=753,
obsID =588,
obsID=718,
obsID =590,
obsID =684,
obsID =756,
obsID =592,
obsID =594,
obsID =687,
obsID=759,
obsID =596,
obsID =598,
obsID =690,
obsID =762,
obsID =600,
obsID =602,
obsID =693,
obsID =765,
obsID =604,
obsID=730,
obsID =606,
obsID =696,
obsID=768,
obsID =608,
obsID =733,
obsID =610,
obsID =699,
obsID=771,
obsID=1139,
obsID=612,
obsID=1139,
obsID=1093,
obsID=614,
obsID=702,
obsID =774,
obsID=1093,
obsID =616,
obsID =739,
obsID =618,
obsID =705,
obsID=777,
obsID =620,
obsID =742,
obsID =622,
obsID =647,
obsID =672,
obsID =708,
obsID =744,

16

position=0.0
position
position
position
position
position
position
position
position
position=
position
position
position
position
position

position

position

position

position

position=
position=10.
position=10.
position=10.
position=10.
position =20.
position =20.
position =20.
position =30.
position=30.
position =40.
position =40.
position =40.
position=50.

=]

coboobooboboboo

coocococoooooo0000000

position=50.
position=60.0
position=60.0
position=60.0
position=70.0
position=80.0
position=80.0
position =80.0
position=90.0
position=100.
position=100.
position=100.
position=110.
position=120.
position 20.
position=120.
position=130.
position=130.
position=140.
position=140.
position=140.
position=150.

position=150.0

position=160.
position =160.
position=160.

position=165.0

position=170.

position=165.0
position=175.0

position =180.
position =180.
position =180.

position=175.0

position=190.
position=190.
position=200.
position=200.
position =200.
position=210.
position=210.
position=220.
position=220.
position=220.
position=220.
position =220.

o]

0
0
0

0

[¢]

0
0

C0O0O00COCO00O000Q

CO0CO0O00O0O00O0OQ

gameTick=150,
noOfPlayers=1,
avatarLastAction=ACTION_USE,
isAvatarAlive=true,

gameWinner=NO_WINNER,
avatarSpeed .935588,
avatarType=

avatarResources={},

isGameOver=false,

av

atarOrientation=[1.0,

, avatarHealthPoints=1,

0.0],

0.0, reference=—1.0 : —1.0, sqDist=2.0}
10.0, reference=—1.0 —1.0, sqDist=122.0}
20.0, reference=—1.0 —1.0, sqDist=442.0}
30.0, reference=—1.0 —1.0, sqDist=962.0}
40.0, reference=-—1.0 —1.0, sqDist=1682.0}
50.0, reference .0 —1.0, sqDist=2602.0}
60.0, reference .0 —1.0, sqDist=3722.0}
70.0, reference .0 : —1.0, sqDist=5042.0}
80.0, reference .0 : —1.0, sqDist=6562.0}
90.0, reference=—1.0 : —1.0, sqDist=8282.0}
100.0, reference=—1.0 —1.0, sqDist=10202.0}
110.0, reference=—1.0 —1.0, sqDist=12322.0}
120.0, reference=—1.0 —1.0, sqDist=14642.0}
130.0, —1.0 : —1.0, sqDist=17162.0}
140.0, reference=—1.0 : —1.0, sqDist=19882.0}
150.0, reference 1.0 —1.0, sqDist=22802.0}
160.0, reference 1.0 —1.0, sqDist=25922.0}
170.0, reference=—1.0 —1.0, sqDist=29242.0}
180.0, reference=—1.0 —1.0, sqDist=32762.0}
190.0, reference=-—1.0 —1.0, sqDist=36482.0}
0.0, reference=—-1.0 : —1.0, sqDist=122.0}
30.0, reference=-—1.0 —1.0, sqDist=1082.0}
40.0 reference=—1.0 —1.0, sqDist=1802.0}
50.0, reference=—1.0 —1.0, sqDist=2722.0}
0.0, reference=—1.0 —1.0, sqDist=442.0}
30.0, reference=—1.0 —1.0, sqDist=1402.0}
50.0, reference=—1.0 —1.0, sqDist=3042.0}
0.0, reference=—1.0 —1.0, sqDist=962.0}
40.0, reference=—1.0 —1.0, sqDist=2642.0}
0.0, reference=-—1.0 —1.0, sqDist=1682.0}
30.0, reference=—1.0 —1.0, sqDist=2642.0}
50.0, reference=-—1.0 —1.0, sqDist=4282.0}
0.0, reference=—1.0 —1.0, sqDist=2602.0}
40.0, reference . —1.0, sqDist=4282.0}
0.0, reference=—1.0 —1.0, sqDist=3722.0}
30.0, reference=—1.0 —1.0, sqDist=4682.0}
50.0, reference=-—1.0 —1.0, sqDist=6322.0}
0.0, reference=—1.0 —1.0, sqDist=5042.0}
0.0, reference=—1.0 —1.0, sqDist=6562.0}
30.0, reference=-—1.0 —1.0, sqDist=7522.0}
50.0, reference=—1.0 —1.0, sqDist=9162.0}
0.0, reference=—1.0 : —1.0, sqDist=8282.0}
0.0, reference=—1.0 —1.0, sqDist=10202.0}
30.0, reference=—1.0 —1.0, sqDist=11162.0}
50.0, reference=—1.0 —1.0, sqDist=12802.0}
. reference=—1.0 : —1.0, sqDist=12322.0}
—1.0 : —1.0, sqDist=14642.0}
X —1.0 : —1.0, sqDist=15602.0}
50.0, reference=—1.0 —1.0, sqDist=17242.0}
0.0, reference=—1.0 : —1.0, sqDist=17162.0}
40.0, reference=—1.0 —1.0, sqDist=18842.0}
0.0, reference=—1.0 —1.0, sqDist=19882.0}
30.0, reference=—1.0 —1.0, sqDist=20842.0}
50.0, reference=—1.0 —1.0, sqDist=22482.0}
0.0, reference=—1.0 —1.0, sqDist=22802.0}
40.0, reference=—1.0 —1.0, sqDist=24482.0}
0.0, reference=—1.0 —1.0, sqDist=25922.0}
30.0, reference=—1.0 —1.0, sqDist=26882.0}
50.0, reference=—1.0 —1.0, sqDist=28522.0}
60.0, reference=—1.0 —1.0, sqDist=31277.0}
0.0, reference=—1.0 —1.0, sqDist=29242.0}
60.0, reference=—1.0 —1.0, sqDist=31277.0}
180.0, reference=—1.0 : —1.0, sqDist=63737.0}
0.0, reference=—1.0 —1.0, sqDist=32762.0}
30.0, reference=—1.0 —1.0, sqDist=33722.0}
50.0, reference=—1.0 —1.0, sqDist=35362.0}
180.0, reference=—1.0 —1.0, sqDist=63737.0}
0.0, reference=—1.0 —1.0, sqDist=36482.0}
40.0, reference=—1.0 —1.0, sqDist=38162.0}
0.0, reference=—1.0 —1.0, sqDist=40402.0}
30.0 reference=—1.0 —1.0, sqDist=41362.0}
50.0, reference=—1.0 —1.0, sqDist=43002.0}
0.0, reference=-—1.0 —1.0, sqDist=44522.0}
40.0, reference=-—1.0 —1.0, sqDist=46202.0}
0.0, reference=—1.0 —1.0, sqDist=48842.0}
10.0, reference=—1.0 —1.0, sqDist=48962.0}
20.0, reference=—1.0 —1.0, sqDist=49282.0}
30.0, reference=—1.0 —1.0, sqDist=49802.0}
40.0, reference=—1.0 —1.0, sqDist=50522.0}

Observation{category =6,
Observation{category=6,
Observation{category=6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category=6,
Observation{category=6,
Observation{category=6,
}, NPCPositions=null,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category=6,
Observation{category=6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category=6,
Observation{category=6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category=6,
Observation{category=6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category=6,
Observation{category=6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category=6,
Observation{category=6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category=6,
Observation{category=6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category=6,
Observation{category=6,
Observation{category =6,

itype=0,
itype=0,
itype=0,
itype=0,

itype
itype
itype
itype
itype

obsID =780,
obsID =805,
obsID =830,
obsID =855,
obsID =880,
obsID =905,
obsID =930,
obsID =955,
obsID =980,
obsID=1005,
obsID=1030,
obsID=1055,
obsID=1080,
obsID=1106,
obsID=1131,

immovablePositions=null,

obsID=578,
obsI 580,
obsID =582,
obsID =584,
obsID =586,
obsID =588,
obsID =590,
obsID =592,
obsID =594,
obsID =596,
obsID =598,
obsID =600,
obsID =602,
obsID =604,
obsID =606,
obsID =608,
obsID=610,
obsID=612,
obsID=614,
obsID=616,
obsID=618,
obsID =620,
obsID =622,
obsID =624,
obsID =647,
obsID =649,
obsID=672,
obsID=674,
obsID =708,
obsID=710,
obsID =744,
obsID =746,
obsID =780,
obsID =782,
obsID =805,
obsID =807,
obsID =830,
obsID =832,
obsID =855,
obsID =857,
obsID =880,
obsID =882,
obsID =905,
obsID =907,
obsID =930,
obsID =932,
obsID =955,
obsID =957,
obsID =980,
obsID =982,
obsID=1005,
obsID=1007,
obsID=1030,
obsID=1032,
obsID=1055,
obsID=1057,
obsID=1080,
obsID=1082,
obsID=1106,
obsID=1108,
obsID=1131,
obsID=1139,
obsID=678,
obsID =681,
obsID =684,
obsID =687,
obsID =690,
obsID =693,
obsID =696,
obsID =699,
obsID=702,
obsID =705,
obsID=712,
obsID=715,

17

position=220.
position=220.
position =220.
position=220.
position=220.
position=220.
position =220.
position =220.
position=220.

coocoooo0QQ

position=220.
position =220.
position =220.
position=220.
position=220.
position=220.

position
position
position
position
position
position
position
position
position
position=
position=
position
position
position
position
position
position
position
position
position
position
position
position
position
position
position
position
position
position
position=
position
position
position
position

11
QAW

=0.0

coooococooooooo0O

position =220.0
position=0.0 :
position=220.0
position=0.0 :
position=220.0
position=0.0 :
position=220.0
position=0.0 :
position=220.0
position=0.0 :
position=220.0
position=0.0 :
position=220.0
position=0.0 :
position=220.0
position=0.0 :
position 20

position
position
position
position
position
position
position
position
position
position
position
position=20.0
position=40.0
position=60.0
position=80.0
position=100.
position=120.
position=140.
position=160.
position=180.
position =200.
position=10.0
position=30.0

coooo0o

movablePositions={

50.0, reference=-—1.0 —1.0, sqDist=51442.0}
60.0, reference=—1.0 —1.0, sqDist=52562.0}
70.0, reference=—1.0 : —1.0, sqDist=53882.0}
80.0, reference=—1.0 : —1.0, sqDist=55402.0}
90.0, reference .0 : —1.0, sqDist=57122.0}
100.0, reference=-—1.0 —1.0, sqDist=59042.0}
110.0, reference=—1.0 : —1.0, sqDist=61162.0}

: 120.0, reference=—1.0 : —1.0, sqDist=63482.0}

: 130.0, reference=—1.0 : —1.0, sqDist=66002.0}

0 140.0, reference=-—1.0 —1.0, sqDist=68722.0}

0 150.0, reference 1.0 —1.0, sqDist=71642.0}

9 160.0, reference 1.0 —1.0, sqDist=74762.0}

9 170.0, reference 1.0 —1.0, sqDist=78082.0}

[¢] 180.0, reference 1.0 —1.0, sqDist=81602.0}

[¢] 190.0, reference=-1.0 —1.0, sqDist=85322.0}

: 0.0, reference —1.0, sqDist=2.0}

: 0.0, referenc . —1.0, sqDist=122.0}

0.0, reference=—1.0 —1.0, sqDist=442.0}

0.0, reference —1.0, sqDist=962.0}

0.0, reference —1.0, sqDist=1682.0}

0.0, reference=—1.0 —1.0, sqDist=2602.0}

0.0, reference=-—1.0 —1.0, sqDist=3722.0}

0.0, reference=-—1.0 —1.0, sqDist=5042.0}

0.0, reference=—1.0 : —1.0, sqDist=6562.0}
0.0, reference=—1.0 : —1.0, sqDist=8282.0}

: 0.0, reference=—1.0 : —1.0, sqDist=10202.0}
0.0, reference=—1.0 : —1.0, sqDist=12322.0}
0.0, reference=—1.0 : —1.0, sqDist=14642.0}
0.0, reference=—1.0 : —1.0, sqDist=17162.0}
0.0, reference=—1.0 : —1.0, sqDist=19882.0}
0.0, reference=—1.0 : —1.0, sqDist=22802.0}
0.0, reference=—1.0 : —1.0, sqDist=25922.0}
0.0, reference=—-1.0 : —1.0, sqDist=29242.0}
0.0, reference=—1.0 : —1.0, sqDist=32762.0}
0.0, reference=—1.0 : —1.0, sqDist=36482.0}
0.0, reference=—1.0 : —1.0, sqDist=40402.0}
0.0, reference=—1.0 : —1.0, sqDist=44522.0}
0.0, reference=—1.0 : —1.0, sqDist=48842.0}

10.0, reference=—1.0 : —1.0, sqDist=122.0}

10.0, reference=—1.0 —1.0, sqDist=48962.0}

20.0, reference=—1.0 : —1.0, sqDist=442.0}

20.0, reference=—1.0 : —1.0, sqDist=49282.0}

30.0, reference=-—1.0 —1.0, sqDist=962.0}

: 30.0, reference=—1.0 : —1.0, sqDist=49802.0}

40.0, reference=—1.0 : —1.0, sqDist=1682.0}
40.0, reference=—-1.0 : —1.0, sqDist=50522.0}

50.0, reference=—1.0 : —1.0, sqDist=2602.0}

: 50.0, reference=—1.0 : —1.0, sqDist=51442.0}

60.0, reference=—1.0 : —1.0, sqDist=3722.0}
60.0, reference=—1.0 —1.0, sqDist=52562.0}

70.0, reference=—1.0 : —1.0, sqDist=5042.0}
70.0, reference=-—1.0 —1.0, sqDist=53882.0}

80.0, reference=—1.0 —1.0, sqDist=6562.0}

: 80.0, reference=—1.0 : —1.0, sqDist=55402.0}

90.0, reference=—-1.0 : —1.0, sqDist=8282.0}
90.0, reference=-—1.0 —1.0, sqDist=57122.0}

100.0, reference=-—1.0 —1.0, sqDist=10202.0}

: 100.0, reference=—1.0 : —1.0, sqDist=59042.0}

110.0, reference=—1.0 —1.0, sqDist=12322.0}
110.0, reference=—1.0 —1.0, sqDist=61162.0}

120.0, reference=-—1.0 —1.0, sqDist=14642.0}
120.0, reference=-—1.0 —1.0, sqDist=63482.0}

130.0, reference=—1.0 —1.0, sqDist=17162.0}

: 130.0, reference=—1.0 : —1.0, sqDist=66002.0}

140.0, reference=-—1.0 —1.0, sqDist=19882.0}

.0 : 140.0, reference=—1.0 : —1.0, sqDist=68722.0}

: 150.0, reference=-—1.0 —1.0, sqDist=22802.0}
150.0, reference=—-1.0 : —1.0, sqDist=71642.0}
160.0, reference=-—1.0 —1.0, sqDist=25922.0}
160.0, reference=—1.0 —1.0, sqDist=74762.0}
170.0, reference=—1.0 —1.0, sqDist=29242.0}
170.0, reference=—1.0 —1.0, sqDist=78082.0}
180.0, reference=—1.0 —1.0, sqDist=32762.0}
180.0, reference=—1.0 : —1.0, sqDist=81602.0}
190.0, reference=—1.0 —1.0, sqDist=36482.0}
190.0, reference=-—1.0 —1.0, sqDist=85322.0}
: 60.0 reference=—1.0 —1.0, sqDist=31277.0}
30.0, reference=—1.0 —1.0, sqDist=1402.0}
30.0, reference=—1.0 —1.0, sqDist=2642.0}
30.0, reference=—1.0 : —1.0, sqDist=4682.0}
30.0, reference=—1.0 : —1.0, sqDist=7522.0}
30.0, reference=—1.0 : —1.0, sqDist=11162.0}
30.0, reference=—1.0 : —1.0, sqDist=15602.0}
30.0, reference=—1.0 : —1.0, sqDist=20842.0}
30.0, reference=—1.0 : —1.0, sqDist=26882.0}
30.0, reference=—1.0 : —1.0, sqDist=33722.0}
30.0, reference=—-1.0 : —1.0, sqDist=41362.0}
40.0, reference=—1.0 : —1.0, sqDist=1802.0}
40.0, reference=—1.0 —1.0, sqDist=2642.0}

Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,
Observation{category =6,

Iz

resourcesPositions=null,

itype=38,
itype=8,
itype=8,
itype=8,
itype=8,
itype=8,
itype=8,
itype=8,
itype=8,
itype=8,
itype=8,
itype=38,

itype=9,
itype=9,
itype=9,
itype=11,

itype=11,

obsID=730,
obsID =739,
obsID=750,
obsID=753,
obsID=756,
obsID=759,
obsID =762,
obsID =765,
obsID =768,
obsID=771,
obsID=774,
obsID=777,
obsID=676,
obsID =742,
obsID =748,
obsID=718,
obsID =733,

portalsPositions=null,

pos

position=130.0
position=190.0
position=20.0
position=40.0
ition=60.0
position=80.0
position=100.
position=120.
position=140.
position=160.
position=180.
position =200.
position=10.0
position=210.0
position=10.0
position=50.0
position=150.0
fromAvatarSpritesPositions=null}

B Example of game output

Listening for transport dt_socket at address:

[GAME] Game idx:119

[PHASE] Starting First Phase of Training in 3
[TRAINING] Result (1->win;
[TRAINING] Result (1->win;
[TRAINING] Result (1->win;

0->lose):
0->lose):
0->lose):

[PHASE] Starting Second Phase of Training in 3 levels.

[TRAINING] Result (1->win;
[TRAINING] Result (1->win;
[TRAINING] Result (1->win;

0->lose):
0->lose):
0->lose):

[PHASE] Starting Validation in 2 levels.

[VALIDATION]
[VALIDATION]
[VALIDATION]
[VALIDATION]
[VALIDATION]
[VALIDATION]
[VALIDATION]
[VALIDATION]
[VALIDATION]
[VALIDATION]
[VALIDATION]
[VALIDATION]
[VALIDATION]
[VALIDATION]
[VALIDATION]
[VALIDATION]
[VALIDATION]
[VALIDATION]
[VALIDATION]
[VALIDATION]

Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result

(1->win;
(1->win;
(1->win;
(1->win;
(1->win;
(1->win;
(1->win;
(1->win;
(1->win;
(1->win;
(1->win;
(1->win;
(1->win;
(1->win;
(1->win;
(1->win;
(1->win;
(1->win;
(1->win;
(1->win;

0->lose):
0->lose):
0->lose):
0->lose):
0->lose):
0->lose):
0->lose):
0->lose):
0->lose):
0->lose):
0->lose):
0->lose):
0->lose):
0->lose):
0->lose):
0->lose):
0->lose):
0->lose):
0->lose):
0->lose):

[PHASE] End Validation in 2 levels.

--> Real execution time:

18

1 minutes,

8888
levels.

level:0, PlayerO:1,
level:1, Player0:0,
level:2, Player0:0,
level:0, PlayerO:1,
level:2, Player0:0,
level:0, PlayerO:1,
level:3, PlayerO:
level:4, PlayerO:
level:3, PlayerO:
level:4, PlayerO:
level:3, PlayerO:
level:4, PlayerO:
level:3, PlayerO:
level:4, PlayerO:
level:3, PlayerO:
level:4, PlayerO:
level:3, PlayerO:
level:4, PlayerO:
level:3, PlayerO:
level:4, PlayerO:
level:3, PlayerO:
level:4, PlayerO:
level:3, PlayerO:
level:4, PlayerO:
level:3, PlayerO:
level:4, PlayerO:
27 seconds

PlayerO-Score:1.
PlayerO-Score:
Player0-Score:0.

Player0O-Score:1.
PlayerO-Score:
Player0-Score:1.

OO OO0, OOODOODOOOOOOOOO0

of

40.0, reference=-1.0 —1.0,
40.0, reference=-1.0 —1.0,

: 50.0, reference=—1.0 : —1.0,

: 50.0, reference=—-1.0 : —1.0,

: 50.0, reference=—-1.0 : —1.0,

: 50.0, reference=—-1.0 : —1.0,
0 50.0, reference=—1.0 : —1.0,
0 50.0, reference=—1.0 : —1.0,
0 50.0, reference=—1.0 : —1.0,
0 50.0, reference=—1.0 : —1.0,
0 50.0, reference=—1.0 : —1.0,
0 50.0, reference=—1.0 : —1.0,

: 30.0, reference=—1.0 : —1.0,

: 40.0, reference=—-1.0 : —1.0,

50.0, reference=—1.0 —1.0,
40.0, reference=—1.0 —1.0,
40.0, reference=-—1.0 —1.0,

PlayerO-Score:
PlayerO-Score:
PlayerO-Score:
PlayerO-Score:
PlayerO-Score:
PlayerO-Score:
PlayerO-Score:
PlayerO-Score:
PlayerO-Score:
PlayerO-Score:
Player0O-Score:
PlayerO-Score:
Player0O-Score:
PlayerO-Score:
PlayerO-Score:
PlayerO-Score:
PlayerO-Score:
PlayerO-Score:
PlayerO-Score:
PlayerO-Score:

wall time.

o

o

sqDist =18842.0}
sqDist =38162.0}

sqDist =3042.0}
sqDist =4282.0}
sqDist =6322.0}
sqDist=9162.0}
sqDist=12802.
sqDist=17242.
sqDist =22482.
sqDist =28522.
sqDist =35362.
sqDist =43002.
sqDist=1082.0}

sqDist =46202.0}

sqDist=2722.0}

sqDist =4282.0}
sqDist =24482.0}

e el e NeNe e e Neo e Ne e Ne Ne lNe Ne Neol

OO OO0 O0ODO0OO0ODODO0OO0ODOO0OOOOOOOO0

timesteps:
timesteps:0
timesteps:

timesteps:
timesteps
timesteps

timesteps

timesteps

timesteps

timesteps

22

timesteps:
1232
timesteps:
1229
timesteps:
147
timesteps:
timesteps:
timesteps:
timesteps:
timesteps:
timesteps:
timesteps:
timesteps:
timesteps:
timesteps:
timesteps:
timesteps:
timesteps:
:939

313

509
: 31
1462

15
23
199
31
33
95

112
148

98

	Overview
	General Video Game AI framework and competitions
	Installing and run
	Requirements and supports
	Download
	Java agent: build and run a sample agent
	Step-by-step using IntelliJ
	Step-by-step using Eclipse

	Python agent: build and run a sample agent
	Step-by-step using IntelliJ
	Step-by-step using Eclipse

	Build and run an agent without IDE
	Build and run a Java agent
	Build and run a Python agent

	Advanced parameter settings
	Legal arguments
	Run with IDE
	Run without IDE

	Possible issues and solutions

	Single-player learning framework
	Parameters
	Implement an agent
	Learning and validation phases
	Learning phase
	Validation phase

	Sample agents

	Single-player learning competition
	Competition process
	Evaluation of agents
	Submission guidelines
	Java client
	Python client

	Future work
	Example of serialised game observation
	Example of game output

