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Self-Adaptive Monte-Carlo Tree Search
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Abstract—Many enhancements for Monte-Carlo Tree
Search (MCTS) have been applied successfully in Gen-
eral Game Playing (GGP). MCTS and its enhance-
ments are controlled by multiple parameters that re-
quire extensive and time-consuming off-line optimiza-
tion. Moreover, as the played games are unknown in
advance, off-line optimization cannot tune parameters
specifically for single games. This article proposes a
self-adaptive MCTS strategy (SA-MCTS) that inte-
grates within the search a method to automatically
tune search-control parameters on-line per game. It
presents five different allocation strategies that decide
how to allocate available samples to evaluate parameter
values. Experiments with 1s play-clock on multi-player
games show that for all the allocation strategies the
performance of SA-MCTS that tunes two parameters
is at least equal to or better than the performance of
MCTS tuned off-line and not optimized per-game. The
allocation strategy that performs the best is NTBEA.
This strategy also achieves a good performance when
tuning four parameters. SA-MCTS can be considered
as a successful strategy for domains that require pa-
rameter tuning for every single problem, and it is also
a valid alternative for domains where off-line parameter
tuning is costly or infeasible.

I. Introduction

MONTE-CARLO Tree Search (MCTS) [1], [2] is a
simulation-based search technique. It has become

popular in game playing, having particular success in
General Game Playing (GGP) [3]. GGP aims at creating
agents that play any abstract game by only being given its
rules, without using prior knowledge, and usually having
only a few seconds available to select which moves to play.

Search-control strategies and enhancements have been
proposed for MCTS in various domains [4]. Among the
most successful ones are Rapid Action Value Estimation
(RAVE) [3], [5], its generalization, GRAVE [6], and the
Move Average Sampling Technique (MAST) [3]. These
strategies improve different parts of the search by exploit-
ing information about general performance of the moves.

The behavior of MCTS strategies is normally controlled
by a certain number of parameters. The performance of
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these strategies depends on how parameter values are set.
Sometimes, extensive off-line tuning is required to find the
best values. Parameters might also be inter-constrained,
so either a large amount of time is spent testing all
possible combinations of values or the parameters are
tuned separately ignoring the inter-dependency. Research
has also shown that in some contexts the best values could
be game dependent [6], [7] and tuning parameters per
game might improve the performance.

In the context of GGP, off-line tuning of parameters
per game is infeasible because agents have to deal with a
theoretically unlimited number of games, treating each of
them as a new game that they have never seen before.
This is why off-line parameter tuning in GGP usually
looks for a single combination of values to use for all
games, picking the one that performs overall best on
a certain (preferably heterogeneous) set of benchmark
games. Tuning search-control parameters for each game
in GGP is still possible if done on-line. A Self-adaptive
MCTS (SA-MCTS) can be designed by devising an on-line
tuning method that adjusts the parameter values for each
new game being played. Such method should also aim at
tuning the parameters in combination, because parameter
values are usually interdependent. In this case, the number
of possible combinations of parameters can become very
large. Therefore, an efficient strategy has to be designed to
decide how to allocate the available samples to test them.

This article extends on the authors’ previous work [8]. It
describes the same on-line tuning method used to achieve
a SA-MCTS strategy and formulates the tuning problem
as a Combinatorial Multi-Armed Bandit (CMAB) [9]. Five
allocation strategies are also presented: Näıve Monte-Carlo
(NMC) [9], [10], Linear Side Information (LSI) [11], an
Evolutionary Algorithm (EA), the recently proposed N-
Tuple Bandit Evolutionary Algorithm (NTBEA) [12], [13]
and the popular Covariance Matrix Adaptation Evolution-
ary Strategy (CMA-ES) [14]. NMC and LSI have been
already presented in [8] and in this article are tested with
some improvements and better tuned parameters. EA,
NTBEA and CMA-ES are applied to on-line parameter
tuning in GGP for the first time. With CMA-ES this
article tests an allocation strategy that considers a contin-
uous parameter domain, while in [8] only strategies with a
discrete parameter domain were considered. Moreover, this
article evaluates the robustness of the allocation strategies
by testing them on MCTS-based agents with different
skills, on increasing number of tuned parameters and,
when tuning six parameters, for different time constraints.
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The remainder of this article is structured as follows.
Section II introduces previous work related to parameter
tuning. Section III gives background on the Multi-Armed
Bandit (MAB) problem, evolutionary computation tech-
niques and MCTS. How to obtain a SA-MCTS algorithm
using on-line parameter tuning and how to formulate the
tuning problem is discussed in Section IV. Section V
describes the five allocation strategies. Results obtained
by testing these strategies in the context of GGP are pre-
sented in Section VI, and Section VII gives the conclusion
and outlines possible future work.

II. Related Work

In the area of game playing on-line tuning of search pa-
rameters has not been well explored. Recently, for General
Video Game Playing (GVGP) [15] SA-MCTS agents with
on-line parameter tuning have been proposed [16]. These
agents achieve robust results, increasing the performance
for a few of the tested games. However, the nature of
GVGP games and the search time of 40ms, used to ensure
real-time play, are different from GGP, which focuses on
board games and allocates a few seconds per move.

More attention has been given to automatic off-line
tuning of search parameters (e.g. [17]–[19]). What most
of these methods have in common is the need for a
high number of samples (e.g. game simulations) against
a benchmark player in order to find an optimal parameter
configuration, which is then evaluated by playing against
an “identical” agent with manually tuned parameters.

Other research focuses on designing Hyper-Heuristics,
which are “a search method or learning mechanism for
selecting or generating heuristics to solve computational
search problems” [20]. This concept has been applied to
devise an hyper-agent [21] for the GVGP framework [22].
The agent’s hyper-heuristic is trained off-line to recognize
from a portfolio of sub-agents the best one for the game
at hand. The hyper-heuristic approach presented in [23],
instead, devises an on-line mechanism to select from a
portfolio of strategies the one that is best suited for the
current game. A similar concept is algorithm selection [24],
which consists in choosing the most appropriate algorithm
for the instance at hand, given a set of problem instances
and a set of algorithms that present a varying performance
depending on the instance they are applied to.

The work proposed in this article is similar to the idea of
hyper-heuristic and algorithm selection. Some parameters
can decide whether to (de)activate a certain search-control
strategy depending on the value that is assigned to them,
actually originating multiple search algorithms. Parameter
tuning can be seen as a hyper-heuristic to choose which
strategies or algorithms to use from a portfolio determined
by the available parameter configurations.

III. Background

This section provides background on the MAB problem,
on evolutionary computation techniques and on MCTS.

A. Multi-Armed Bandit

The MAB problem [25] with n arms is defined as a
set of n unknown independent real reward distributions
R = {R1, ..., Rn}, each associated to one of the arms.
When an arm is played a reward is obtained as a sample
of the corresponding distribution. The aim of a sampling
strategy for a MAB is to maximize the cumulative reward
obtained by successive plays of the arms. For each iteration
the strategy chooses which arm to play depending on past
played arms and obtained rewards.

B. Evolutionary Computation Techniques

Evolutionary computation [26] is a set of nature-inspired
optimization algorithms. In general, a population of indi-
viduals (candidate solutions) is randomly initialized when
the optimization process starts, then updated iteratively
by evaluation, selection and reproduction until stopping
conditions are met. The population can be composed by
only one individual. Evolutionary computation techniques
are classified by different ways of reproduction, size of
population, discrete or continuous search space, etc. Most
of the applications of evolutionary computation techniques
to game playing focus on evolving sequences of actions to
play and evolving game parameters or levels [12], [27].

C. Monte-Carlo Tree Search

MCTS is a best-first search algorithm that incremen-
tally builds a tree representation of the search space of
a game and uses simulations to estimate the values of
game states [1], [2]. Four phases can be identified for each
iteration of the MCTS algorithm:
Selection: a selection strategy is used at every node

in the tree to select the next move to visit until a node
is reached that is not fully expanded (i.e. not for all the
successors states a node has been added to the tree).
Expansion: one or more nodes are added to the tree

according to a given expansion strategy.
Play-out: starting from the last node added to the tree

a play-out strategy chooses which moves to play until a
terminal state is reached.
Backpropagation: the result of the simulation is prop-

agated back through all the nodes traversed in the tree.
When the search budget expires, MCTS returns the best

move in the root node to be played in the real game. The
best move might be the one with the highest estimated
average score or the one with the highest number of visits.

Many strategies have been proposed for the differ-
ent phases of MCTS. The standard selection strategy is
UCT [2] (Upper Confidence bounds applied to Trees), that
sees the problem of choosing an action a∗ in a node s of the
tree as a MAB and uses the UCB1 sampling strategy [25]
to select the move to visit next:

a∗ = argmax
a∈A(s)

Q(s, a) + C ×

√
lnN(s)

N(s, a)

 . (1)

A(s) is the set of legal moves in s, Q(s, a) is the average
result of all simulations in which move a has been selected
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Fig. 1. Interleaving on-line tuning with MCTS (inspired by [28]).

in s, N(s) is the number of times node s has been visited
during the search and N(s, a) is the number of times
move a has been selected whenever node s was visited.
The C constant is used to control the balance between
exploitation of good moves and exploration of less visited
ones.

A selection strategy that proved successful in multiple
domains, such as Knighttrough, Domineering, variants of
Go and GGP is GRAVE [6], [7], a modification of the
RAVE strategy [3], [5]. GRAVE selects a move according
to (1), where the term Q(s, a) is substituted by:

(1− β(s))×Q(s, a) + β(s)×AMAF (s ′, a) . (2)

Here, s′ is the closest ancestor of s that has at least
Ref visits (note that it might be s itself). The value
AMAF (s′, a) is known as the All Moves As First [29]
value. It represents the average result obtained from all
simulations in which move a is performed at any time after
node s′ is visited. The AMAF values are used to increase
the number of samples when selecting a move in nodes
with a low number of visits. This way the variance of the
move value estimates is reduced and the learning process
is faster. The parameter β(s) controls the importance
of the AMAF value and decreases it over time, when
the number of visits for the node increases. One of the
proposed formulas to compute β is the following [3], [5]:

β(s) =

√
K

3×N(s) +K
, (3)

where K is the equivalence parameter, which indicates for
how many simulations the two scores are weighted equal.

For the play-out phase, MAST [3] has shown to improve
the performance over a simple random strategy. During
the search, for each move a, MAST keeps track of a global
average return value QMAST (a) of all the simulations in
which a was played. Then, when selecting a move for a
certain game state in the play-out, it chooses the move
with the highest QMAST (a) with probability (1 − ε) or a
random move with probability ε.

IV. Design of self-adaptive MCTS

This section presents the two main aspects of the
proposed SA-MCTS. Subsection IV-A discusses how the
tuning strategy can be integrated within the MCTS algo-
rithm to make it adaptive. Subsection IV-B presents the
formulation of the tuning problem.

A. Integration of Parameter Tuning with MCTS

Figure 1 shows how parameter tuning is interleaved with
MCTS simulations. For each iteration of the algorithm a
Tuner uses an allocation strategy to choose a combination
of values for the parameters. Next, the four phases of
MCTS are performed using the selected parameter values
to control the search. The result obtained by the simu-
lation is used to update statistics about the quality of
the chosen parameter combination. This process continues
until the end of the game, such that the parameters are
tuned on-line for the whole duration of the search.

B. Formulation of the Parameter Tuning Problem

An allocation strategy is required to decide how to di-
vide the available number of samples among all the combi-
nations of parameter values that have to be evaluated. An
ideal allocation strategy for the on-line parameter tuning
problem should aim to assign most of the samples to
good value combinations, reducing the number of samples
assigned to bad value combinations. This is because each
evaluated combination has an impact on the quality of the
actual search. If bad combinations are evaluated too often
the quality of the search results will decrease.

The main idea behind the formulation of the tuning
problem is based on the work presented in [23]. This article
discusses multiple allocations strategies for a problem
similar to ours (on-line adaptation of the search strategy
to the played game). Among all the approaches they show
that the one considering the simulation allocation as a
MAB problem combined with UCB selection is the one
that assigns the highest number of samples to the best
search strategy and the lowest to the worst.

The action-space of the on-line parameter tuning prob-
lem has a combinatorial structure (i.e. the action of choos-
ing a parameter setting consists of multiple sub-actions
that assign a certain value to each of the parameters). For
this reason, instead of considering the tuning problem as
a MAB, this article considers it as a CMAB (either with
discrete or continuous variables) and bases the design of
the allocation strategies on this formulation.

The CMAB with discrete variables is defined by the
following three components:

• Set of d variables, P = {P1, ..., Pd}, where each vari-
able Pi can take mi different values Vi = {v1

i , ..., v
mi
i }.

• Reward distribution R : V1×...×Vd → R that depends
on the combination of values assigned to the variables.
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• Function L : V1 × ... × Vd → {true, false} that
determines which combinations of values are legal.

The CMAB with continuous variables is defined anal-
ogously, by considering that each variable Pi can take
a value in the interval Ii = [minPi ,maxPi ]. For the
parameter tuning problem, the parameters are considered
as the variables of the CMAB.

V. Allocation strategies

This section introduces five allocation strategies: Näıve
Monte Carlo [9], [10] (NMC, Subsection V-A1), Linear
Side Information [11] (LSI, Subsection V-A2), Evolution-
ary Algorithm (EA, Subsection V-A3), N-Tuple Bandit
Evolutionary Algorithm [12], [13], [16] (NTBEA, Subsec-
tion V-A4), and Covariance Matrix Adaptation Evolution-
ary Strategy [14] (CMA-ES, Subsection V-B1). The first
four consider a discrete domain for the parameter values,
while the latter considers a continuous domain.

For the sake of simplicity, the pseudocode of the different
allocation strategies is given for one-player games. When
tuning parameters for two- or multi-player games, all the
allocation strategies compute a different combination of
parameters for each role in the game independently (i.e.
each role has its own instance of the allocation strategy).
All the computed combinations of parameters are then
used to control the same MCTS simulation. In this way,
parameter value combinations are co-evolved for all the
roles. Note that having a different parameter combination
for each role means that during the MCTS simulation
different instantiations of selection or play-out strategies
might be used to choose the actions for the different roles.

A. Discrete Allocation Strategies

This section presents the four allocation strategies that
consider the tuning problem as a CMAB with a discrete
domain. The first two strategies, NMC and LSI, have
already been proposed by previous research to specifically
deal with CMABs. EA and NTBEA, being based on evo-
lutionary computation, have not been specifically designed
for CMABs, but can still be applied in this context.

1) Näıve Monte-Carlo: This strategy was first proposed
by Ontañón [9], [10] and applied to real-time strategy
games (known for having a combinatorial action-space).

Algorithm 1 shows the pseudocode for NMC. The pro-
cedure NmcParameterTuning() implements the struc-
ture discussed in Subsect. IV-A. The procedure ChooseP-
arameterValues() shows how NMC chooses the combi-
nation of parameter values to test before an MCTS simu-
lation. Two main steps are distinguished, exploration that
generates new parameter combinations, and exploitation
that evaluates the combinations generated so far. These
two steps are interleaved and for each iteration a policy π0

chooses which one to perform. The exploration is based on
the näıve assumption: R(~p = 〈p1, ..., pd〉) ≈

∑d
i=1Ri(pi),

where ~p is a vector representing a possible assignment of
values 〈p1, ..., pd〉 to the parameters. This means that the
expected reward of a certain configuration of parameter

Algorithm 1 Pseudocode for NMC
1: procedure NmcParameterTuning( )
2: while game not over do
3: ~p← ChooseParameterValues( )
4: r ← PerformMctsSimulation(~p )
5: UpdateStatistics(~p, r)

———————————————————————————————
1: procedure ChooseParameterValues( )

Output: Combination of parameter values ~p = 〈p1, ..., pd〉.
2: phase ← π0.choosePhase( )
3: if phase = exploration then . Generate combination
4: for i← 1, ..., d do
5: pi ← πl.ChooseValue(MABi)

6: MABg .Add(~p)
7: else if phase = exploitation then . Eval. combination
8: ~p← πg .ChooseCombination(MABg)

9: return ~p
———————————————————————————————
1: procedure UpdateStatistics(~p, r)

Input: Chosen parameter values ~p, reward r obtained from the
simulation controlled by parameter values ~p.

2: MABg .UpdateArmStatistics(~p, r)
3: for i← 1, ..., d do
4: MABi.UpdateArmStatistics(pi, r)

values can be approximated by a linear combination of ex-
pected rewards of single parameter values, as if considering
the parameters to be independent. More precisely, the ex-
ploration considers d local MABs, one per parameter and
uses them independently to generate a new combination
of parameter values. Each local MAB has an arm for each
possible value of the associated parameter. A policy πl is
used to select one value pi for each parameter Pi using
the corresponding local MAB (i.e. MAB i). The resulting
combination of values, if not yet present, is added to the
global MAB (i.e. MABg) used during the exploitation.
MABg considers each arm to be associated to a possible
parameter combination. Initially it has no arms and is
filled during exploration. The evaluation uses a policy πg
to select from MABg a parameter combination to evaluate.

The procedure UpdateStatistics(~p, r) shows how the
reward of the MCTS simulation is used to update statistics
about the chosen parameter values. Statistics are updated
in the global MAB for the given combination and in the
local MABs for each value in the combination.

2) Linear Side Information: The LSI algorithm [11] is
similar to NMC and distinguishes two main steps, called
generation and evaluation. The generation step, like the
exploration step of NMC, generates new combinations of
parameter values considering them as independent (i.e.
making a näıve assumption), while the evaluation step,
like the exploitation step of NMC, evaluates the generated
combinations. The main difference with NMC is that LSI
performs these two steps in sequence instead of inter-
leaving them, and a total predefined budget of available
samples N = Ng +Ne is divided among them.

Algorithm 2 gives the pseudocode for LSI. The pro-
cedure LsiParameterTuning(Ng, Ne, k) implements the
main logic of LSI. The generation uses up to Ng samples
(i.e. MCTS simulations) to generate a set C∗ ⊆ C =
V1× ...×Vd of at most k legal combinations of parameters.
The evaluation uses up to Ne samples to evaluate the
combinations of values in C∗ and recommend the best one,
~p ∗. When both phases of LSI are over, the recommended
best combination ~p ∗ is used to control the rest of the
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Algorithm 2 Pseudocode for LSI
1: procedure LsiParameterTuning(Ng, Ne, k)

Input: #samples Ng for the generation phase, #samples Ne for the
evaluation phase, #candidates k to generate.

2: C∗ ← Generate(Ng, k)
3: ~p ∗ ← Evaluate(C∗, Ne)
4: while game not over do
5: PerformMctsSimulation(~p ∗)

———————————————————————————————
1: procedure Generate(Ng, k)

Input: #samples Ng for the generation phase, #candidates k to
generate.
Output: Set of candidate parameter combinations to evaluate, C∗.

2: R̂← SideInfo(Ng)
3: C∗ ← ∅
4: for k times do
5: ~p = 〈p1, . . . , pd〉 ← empty array of size d
6: V ←

⋃d
i=1 Vi

7: while V 6= ∅ do
8: vji ∼ D[R̂ �V ]
9: V ← V \ Vi

10: pi ← vji
11: C∗ ← C∗ ∪ {~p }
12: return C∗
———————————————————————————————
1: procedure SideInfo(Ng)

Input: #samples Ng for the generation phase.
Output: Weight function R̂ over single parameter values.

2: V ←
⋃d
i=1 Vi

3: x←
⌊
Ng
|V |

⌋
4: for x times do
5: for each vji ∈ V do

6: ~p← RandomlyExtend(vji )
7: r ← PerformMctsSimulation(~p )
8: average R̂(vji ) with r

9: return R̂
———————————————————————————————
1: procedure Evaluate(C∗, Ne)

Input: Set of parameter combinations to evaluate C∗, #samples Ne
for the evaluation phase.
Output: Best parameter combination.

2: C0 ← C∗

3: for i← 0 to (
⌈
log2 |C

∗|
⌉
− 1) do

4: x←
⌊

Ne
|Ci|dlog2 |C∗|e

⌋
5: for x times do
6: for each ~p ∈ Ci do
7: r ← PerformMctsSimulation(~p )
8: average expected value of ~p with r

9: Ci+1 ←
⌈
|Ci|/2

⌉
elements with highest estimated value

10: return the only combination ~p ∈ Cdlog2 |C∗|e

MCTS simulations until the game terminates. The Per-
formMctsSimulation(~p ) procedure, before returning
the control to the LSI procedure to continue the tuning,
takes care of playing a move in the real game if the timeout
for the current game step is reached.

The procedure SideInfo(Ng) constructs the function

R̂ :
⋃d
i=1 Vi → R, that associates to each parameter value

vji the average reward R̂(vji ) obtained by all the MCTS
simulations that were allocated to vji . To construct R̂ the
procedure divides equally over all the parameter values
the total number of generation samples Ng. Each time a
parameter value vji is sampled using an MCTS simulation
the other parameters are set to random values.

The procedure Generate(Ng, k) uses the function R̂
to generate up to k combinations of parameter values. To
do so, the function R̂ is normalized to create a probability
distribution over (a subset of) its domain. The notation
D[R̂ �V ] indicates the probability distribution induced by
R̂ over the subset V of its domain. Each combination
is generated by repeatedly sampling a value from the
distribution D[R̂ �V ]. The first time V =

⋃d
i=1 Vi (i.e. all

the domain). For each subsequent step the set of available
values Vi for the last set parameter Pi is removed from V .

The procedure Evaluate(C∗, Ne) uses sequential halv-
ing [30] to repeatedly evaluate the generated combinations
and finally recommend one. Sequential halving performs
multiple iterations dividing equally among them the avail-
able samples Ne. During each iteration the combinations
are sampled uniformly and only half of them is kept for the
next iteration (the half with the highest expected value).
This process ends when only one combination is left.

It is important to note that LSI, as opposed to the
other allocation strategies, is based on a fixed number
of samples N that must be set in advance. Choosing a
value for N is not trivial, if the value is too high the
search is likely controlled by parameter values selected
randomly, because the game might terminate before LSI
reaches the evaluation step. On the contrary, if the value
is too low the search is likely controlled by a sub-optimal
combination, recommended using only a low number of
samples. Ideally, N should correspond to the total number
of available simulations for the game. Because in GGP is
not possible to know this exact number in advance, N is
estimated during the start-clock using the average game
length of the performed simulations and the number of
combinations that can be sampled per game step.

3) Evolutionary Algorithm: A subset of evolution-
ary computation is Evolutionary Algorithms (EAs) [26],
which, at each generation, select a subset of individuals
from the current population as elite, and reproduce the
population using the elite by crossover and mutation. EAs
do not rely on any assumption on the fitness function or
fitness landscape. For the tuning problem, an EA can be
seen as a budget allocation strategy which decides to spend
more or less budget on some individuals, thus parameter
settings of the agent. A combination of parameter values is
considered as an individual, where each single parameter
is a gene. The fitness of each individual is computed as
the reward obtained by the MCTS simulation controlled
by the corresponding parameter values.

Algorithm 3 shows the pseudocode for EA. The main
algorithm is implemented by the procedure EaParame-
terTuning(λ, µ, pcross). The initial population Λ of size
λ is generated randomly. Until the game is over, the
current population is evaluated using MCTS simulations
and evolved. When evolving, the µ elite individuals of the
population (i.e. the ones with highest fitness) are used to
generate λ − µ new individuals. These new individuals,
together with the elite will form the new population.

The procedure GenerateIndividual(M,pcross) shows
how a new individual is generated. With probability pcross
a new individual is generated by uniform crossover of
two randomly selected elite individuals. Otherwise it is
generated by random mutation of a single parameter value
of a randomly selected elite individual.

4) N-Tuple Bandit Evolutionary Algorithm: Recently, a
new type of Evolutionary Algorithm called N-Tuple Ban-
dit Evolutionary Algorithm (NTBEA) has been proposed
by Lucas et al. [13]. Kunanusont et al. [12] applied it to
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Algorithm 3 Pseudocode for EA
1: procedure EaParameterTuning(λ, µ, pcross)

Input: Population size λ, elite size µ, probability of generating an
individual by uniform crossover pcross .

2: Λ← ∅ . Empty population set
3: for i← 1, ..., λ do
4: ~p← GenerateRandomIndividual( )
5: Λ← Λ

⋃
{~p }

6: while game not over do
7: for ~p ∈ Λ do
8: r ← PerformMctsSimulation(~p )
9: UpdateFitness(~p, r)

10: if game over then
11: return
12: M ← get µ individuals in Λ with highest fitness
13: Λ←M
14: for i← µ+ 1, ..., λ do
15: ~p← GenerateIndividual(M , pcross)
16: Λ← Λ

⋃
{~p}

———————————————————————————————
1: procedure GenerateIndividual(M , pcross)

Input: Set M of elite individuals in the population, probability of
generating an individual by uniform crossover pcross .
Output: The generated individual.

2: if Rand(0, 1) < pcross then
3: parent1 ← random individual in M
4: parent2 ← random individual in M
5: return UniformCrossover(parent1, parent2)
6: else
7: parent ← random individual in M
8: return SingleRandomMutation(parent)

automatic game parameter tuning. Sironi et al. [16] used
it for on-line tuning of search-control parameters of an
MCTS agent in GVGP. Like the previously presented EA,
NTBEA considers each combination of parameters as an
individual that is evolved over time by mutating single
parameter values. Three components can be identified for
NTBEA, the main Evolutionary Algorithm, a noisy fitness
evaluator (represented in our case by MCTS simulations
that evaluate parameter combinations), and an n-tuple
bandit fitness landscape model (LModel , Algorithm 4).

NTBEA uses LModel to memorize statistics (e.g. mean,
standard deviation, number of evaluations) of every legal
value of every parameter and uses this model in com-
bination with a bandit approach to decide which of the
individuals should be evaluated next. Similar to the NMC
approach, beside modeling each parameter as a bandit and
each value of a parameter as an arm, each tuple formed by
a subset of the available parameters is modeled as a macro-
arm (e.g. if all the 2-tuples of a d-dimensional problem are

considered, then d(d−1)
2 macro-arms will be used).

Algorithm 4 gives the pseudocode for the implementa-
tion of LModel. Given a d-dimensional search space, this
model sub-samples its dimensions with a number of n-
tuples with lengths that can range from 1 to d. Not all
lengths in the range [1, d] must necessarily be considered,
but a set L ⊆ {1, . . . , d} with the lengths l that we want
to use can be specified. The procedure Init(L, P ) shows
how the landscape model is initialized. Given the set of
parameters P , for each of the specified lengths l ∈ L
all the possible l-tuples t are generated, and for each
of them an empty look-up table LUTt is created. For
example, given P = {P1, P2, P3} and L = {1, 2, 3} the
following n-tuples with their own LUT would be created:
〈P1〉, 〈P2〉, 〈P3〉, 〈P1, P2〉, 〈P1, P3〉, 〈P2, P3〉, 〈P1, P2, P3〉.

Whenever a combination of parameter values ~p is eval-

Algorithm 4 Pseudocode for LModel
1: procedure Init(L, P )

Input: Set L with the length of the n-tuples that we want to consider,
and set of parameters to tune P .

2: nTuples ← ∅
3: for l ∈ L do
4: lTuples ← generate from P all n-tuples of length l
5: nTuples ← nTuples ∪ lTuples

6: for t ∈ nTuples do
7: LUT t ← ∅

———————————————————————————————
1: procedure UpdateStatistics(~p, r)

Require: Initialized set of n-tuples, nTuples.
Input: Combination of parameter values, ~p, and reward r obtained
from the simulation controlled by parameter values ~p.

2: for t ∈ nTuples do
3: if not LUTt .contains(~p |t) then
4: LUTt .put(~p |t)
5: entry ← LUTt .get(~p |t)
6: entry.rsum ← entry.rsum + r
7: entry.n ← entry.n + 1
8: LUTt .n ← LUTt .n + 1

———————————————————————————————
1: procedure UcbValue(~p , CNTBEA)

Require: Initialized set of n-tuples, nTuples.
Input: Parameter value combination ~p for which to compute the UCB
value, exploration constant CNTBEA for the UCB formula.
Output: UCB value of the given parameter combination.

2: UCB ← 0
3: count ← 0
4: for t ∈ nTuples do
5: entry ← LUTt .get(~p |t)
6: if entry 6= null then

7: UCB~p |t ←
entry.rsum
entry.n + CNTBEA ×

√
ln(LUTt.n)

entry.n

8: UCB ← UCB + UCB~p |t
9: count ← count + 1

10: if count > 0 then
11: return UCB

count
12: else
13: return 0

uated by performing an MCTS simulation, the obtained
reward r is used to update the LUT of each n-tuple
as shown in the procedure UpdateStatistics(~p, r). The
notation ~p |t indicates the vector of values in ~p that are
assigned to the parameters considered by the n-tuple t. For
example, given the set of parameters P = {P1, P2, P3}, the
parameter combination ~p = 〈p1, p2, p3〉, and the n-tuple
t = 〈P1, P3〉, we will have ~p |〈P1,P3〉 = 〈p1, p3〉. For each n-
tuple t, the entry in LUT t that corresponds to the value
assignment ~p |t is updated by increasing by 1 the number of
visits and by r the total reward sum. Finally, the number
of visits of LUT t is also increased by 1.

The procedure UcbValue(~p , CNTBEA) computes the
UCB value of a given combination of parameters ~p using
LModel . First, for each vector of values ~p |t with at least
one visit we compute the UCB1 value UCB~p |t considering
the corresponding LUT t as a MAB. This means that each
arm of the MAB corresponds to an entry in LUT t, and

Algorithm 5 Pseudocode for NTBEA.
1: procedure NtbeaParameterTuning(x, L, P , CNTBEA)

Input: #neighbors x to generate during evolution, set L with the
length of the n-tuples that we want to consider, set of parameters to
tune P , exploration constant CNTBEA to compute the UCB values.

2: LModel.Init(L, P )
3: ~p← GenerateRandomIndividual( )
4: while game not over do
5: r ← PerformMctsSimulation(~p )
6: LModel.UpdateStatistics(~p, r)
7: N ← generate x neighbors of ~p by single random mutation
8: ~p← argmax~p ′∈N (LModel.UcbValue(~p ′, CNTBEA))
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Algorithm 6 Pseudocode for CMA-ES
1: procedure CmaEsParameterTuning(~x, σ, α)

Input: Initial point (distribution mean) ~x and initial standard de-
viation (i.e. step-size) σ for the CMA-ES strategy, factor α used to
compute the fitness penalty for infeasible solutions.

2: cma ←InitializeCmaEs(~x, σ)
3: while not(cma.IsStopped( )) do
4: Λ← cma.SamplePopulation( )
5: ~f ← new vector of size |Λ|
6: for ~pj ∈ Λ do
7: fj ← ComputeFitness(~pj)

8: cma.UpdateDistribution(~f )

9: ~p← cma.GetMeanSolution( )
10: f ← ComputeFitness(~p )
11: cma.SetFitnessOfMean(f)
12: ~p ∗ ← cma.GetBestSolution( )
13: (~p ∗, penalty)← RepairIndividual(~p ∗, α)
14: ~p ∗ ← DenormalizeIndividual(~p ∗)
15: while game not over do
16: PerformMctsSimulation(~p ∗)
———————————————————————————————
1: procedure ComputeFitness(~p )

Input: Individual for which to compute the fitness ~p.
Output: The fitness value of the given individual.

2: (~p , penalty)← RepairIndividual(~p , α)
3: ~p← DenormalizeIndividual(~p )
4: r ← PerformMctsSimulation(~p )
5: return (100− r + penalty)

———————————————————————————————
1: procedure RepairIndividual(~p , α)

Input: Individual ~p to be repaired if at least one of its values is
infeasible (/∈ [0, 1]).
Output: The repaired individual with its penalty.

2: ~p ′ ← new vector of size |~p |
3: for pi ∈ ~p do
4: if pi /∈ [0, 1] then
5: if pi < 0 then
6: p′i ← 0
7: else
8: p′i ← 1

9: else
10: p′i ← pi

11: penalty ← α
∥∥~p− ~p ′∥∥

12: return (~p ′, penalty)
———————————————————————————————
1: procedure DenormalizeIndividual(~p )

Input: Individual ~p for which each value pi ∈ ~pmust be denormalized
from [0, 1] to its interval of feasible values [minPi ,maxPi ].
Output: Individual with denormalized values.

2: ~p ′ ← new vector of size |~p |
3: for pi ∈ ~p do
4: p′i ← minPi + pi(maxPi −minPi )

5: return ~p ′

thus to a possible assignment of values to the parameters
considered by the n-tuple t. Then, all the UCB~p |t values
are averaged to obtain the UCB value for combination ~p.

Algorithm 5 gives the pseudocode of the NTBEA allo-
cation strategy and shows how it uses LModel . NTBEA
starts with a randomly generated parameter combination
~p, evaluates it with an MCTS simulation and uses the
obtained reward r to update statistics in LModel . Then, it
generates x neighbors of ~p using single random mutations
and computes their UCB value using LModel . The neigh-
bor with the highest UCB value becomes the currently
considered solution and the procedure is repeated.

B. Continuous Allocation Strategy

This subsection describes how CMA-ES is used as al-
location strategy that considers the tuning problem as a
CMAB with a continuous domain.

1) Covariance Matrix Adaptation Evolutionary Strat-
egy: A powerful evolutionary computation technique is
CMA-ES [14], a second-order method using the covariance

matrix estimated iteratively by finite differences. It has
been proved to be efficient for optimizing non-linear non-
convex problems in the continuous domain without a-
priori domain knowledge, thus no knowledge of the fitness
landscape or the gradient function is required.

For each generation (g + 1), CMA-ES generates a

population of λ new individuals ~p
(g+1)
j by sampling the

multivariate normal distribution N (~0 ,C(g)) as follows:

~p
(g+1)
j ∼ ~x (g) + σ(g)N

(
~0 ,C(g)

)
. (4)

Here, ~x (g), σ(g) and C(g) are the mean value of the search
distribution, the step-size and the covariance matrix at
generation g, respectively. After computing the fitness of
the population at generation (g + 1), the highest ranked
individuals are used to update ~x, σ and C for the next
generation. More details can be found in the tutorial [31].

As allocation strategy for the tuning problem we use
an existing implementation of CMA-ES 1. Algorithm 6
shows how it has been integrated in the code. The proce-
dure CmaEsParameterTuning(~x, σ, α) shows how the
strategy works. The variable cma refers to an instance
of the CMA-ES algorithm initialized with the given start
point ~x and step-size σ. Until CMA-ES meets one of its
termination criteria, cma.SamplePopulation() samples
a new population and cma.UpdateDistribution(~f ) uses
its fitness to update the distribution. Upon termination,
the mean value of the distribution is evaluated and its
fitness updated. The overall best solution (parameter com-
bination) is used to control the rest of the search.

Note that the computation of the fitness of an indi-
vidual shown in procedure ComputeFitness(~p ) needs
some precautions. First of all, CMA-ES minimizes the
fitness function, while we want to maximize it, thus the
fitness is computed as (100 − r), where 100 is the max-
imum achievable reward in GGP and r is the reward
obtained by the MCTS simulation controlled by the given
parameter combination ~p . Moreover, when tuning with
CMA-ES we consider each parameter to be feasible in the
interval [0, 1] and the optimum is expected to be in the
hyper-cube [0, 1]d (d number of parameters). This has two
implications: (i) CMA-ES could still sample individuals
with some values outside [0, 1] and (ii) the actual interval
of feasible values for the parameters might be different
from [0, 1]. In the first case, whenever an individual is
infeasible, we compute its fitness as the fitness of a repaired
individual to which we add a penalty. This has been
implemented according to the tutorial [31] and is shown
in the procedure RepairIndividual(~p , α). In the second
case, before evaluating a combination of parameters with
an MCTS simulation, all the values are denormalized from
[0, 1] to their own interval of feasible values as shown in
the procedure DenormalizeIndividual(~p ).

VI. Empirical Evaluation

This section presents an empirical evaluation of on-line
parameter tuning and a comparison of the discussed allo-

1Code and details available at cma.gforge.inria.fr .
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cation strategies. The setup of the performed experiments
is presented in Subsect. VI-A, while Subsects. VI-B, VI-C,
VI-D, VI-E, VI-F and VI-G report the obtained results.

A. Setup

On-line parameter tuning has been implemented in
the framework provided by the open source GGP-Base
project [32]. It is used to tune the search parameters of
the following two GGP agents2:

• SP: an MCTS agent that uses UCT as selection
strategy and MAST as play-out strategy.

• AP: a more advanced MCTS agent that uses GRAVE
as selection strategy and MAST as play-out strategy.

The purpose of using a more advanced agent is twofold.
First of all, AP has more search-control parameters and
enables the experiments to verify how the allocation
strategies scale when the search space increases. Second,
we can use it to verify how on-line parameter tuning
performs with a more informed selection strategy. Table I
reports all the tunable parameters used by either SP or
AP. Their default values are obtained by tuning them
off-line in sequence on the following set of games [33]:
3D Tic Tac Toe, Breakthrough, Knightthrough, Skirmish,
Battle, Chinook, Chinese Checkers. For K, Ref and T the
continuous domain has been restricted to a value much
smaller than infinity because after a certain threshold all
values have more or less the same effect on the search.

Below are the settings of all the allocation strategies:
NMC: the policy π0 is set to an ε-greedy strategy, which
performs exploration with probability ε0 = 0.75 and
exploitation with probability (1− ε0) = 0.25. These values
are the same as in [9]. The policies πl and πg are both set
to UCB1 with exploration constants Cl = Cg = 1, thus
with high exploration. Experiments with smaller values of
C showed a decrease in performance, suggesting that for
the tuning problem exploration is fundamental because the
best parameter combinations might change over time.
LSI: the total number of available samples N is estimated
during start-clock and divided among the generation and
evaluation steps as follows: Ng = 0.75N and Ne = 0.25N
(this keeps the proportion between generation and evalu-
ation the same as the proportion between exploration and
exploitation in NMC). When tuning only two parameters
the number of generated combinations k is set to 20, while
when tuning more than two parameters k = 2 000.
EA: the population size λ is set to 50 and the elite size µ
is set to 25. The probability of generating a new individual
by uniform crossover pcross is set to 0.5. Smaller values for
µ were tested, but resulted in a decreased performance.
NTBEA: the number of neighbors that are generated x is
set to 5 (higher values showed a decrease in performance
of the agents). The length considered to generate the n-
tuples are set to L = {1, d}, where d is the number of tuned
parameters. Experiments considering all possible lengths
for the n-tuple showed no improvement in performance

2Code of agents and tuning strategies available at github.com/
ChiaraS/GGP-Project

and a decrease in simulations per second performed by
the agents. The exploration constant CNTBEA used to
compute UCB1 values in LModel is set to 0.2.
CMA-ES: according to the suggestions in the tuto-
rial [31], the initial point ~x is set to a random point
in [0, 1]d and σ is set to 0.3. The value of α used to
compute the penalty of infeasible individuals is set to 100.
In addition, we disable all termination criteria regarding
the fitness function, so that the optimization continues
even if the minimum fitness is reached or if no significant
change in fitness is observed. The motivation behind this
choice is that the best parameter combination for MCTS
might change over time, thus we want to keep exploring
the search space. All other settings for CMA-ES are left
to the default values (see tutorial [31]).

In addition, the last available version of CadiaPlayer3

[3], the three-time champion of the GGP competition (in
2007, 2008 and 2012) is used in a series of experiments as a
benchmark to compare the performance of the best on-line
tuning agent with the one of the off-line tuned agent.

Note that in GGP it is assumed that agents cannot re-
member previously learned knowledge in-between games.
This means that both the game tree built by MCTS
and the parameter statistics collected by the allocation
strategies will be reset before each new game run.

All agents are tested on a set of 14 heterogeneous
games [33]: 3D Tic Tac Toe, Breakthrough, Knightthrough,
Chinook, Chinese Checkers with 3 players, Checkers, Con-
nect 5, Quad (the version played on a 7× 7 board), Sheep
and Wolf, Tic Tac Chess Checkers Four (TTCC4 ) with 2
and 3 players, Connect 4, Pentago and Reversi. For each
experiment, two agents at a time are matched against each
other. For each game, all possible assignments of agents
to the roles are considered, except the two configurations
that assign the same agent to each role. All configurations
are run the same number of times until at least 500
games have been played. Each match runs with 1s start-
and play-clock, except for the experiments that involve
CadiaPlayer. In these experiments CadiaPlayer uses
10s start- and play-clock while the other agents use 1s
start- and play-clock, because our agents use a PropNet-
based reasoner, and thus can perform a higher number of
simulations per second. Experimental results always report
the average win percentage of one of the two involved
agents with a 95% confidence interval. The average win
percentage of the agents for a game is computed by split-
ting 1 point among the agents that achieved the highest
score and assigning 0 points to all other agents.

B. On-line Tuning for the SP Agent

This series of experiments evaluated the application of
on-line tuning to the MCTS agent SP. Table II shows the
results obtained by the agents that tune the parameters C
and ε on-line with each of the presented allocation strate-
gies against the off-line tuned SP agent. All the on-line

3Version of 18-11-2012. Downloaded from http://cadia.ru.is/wiki/
public:cadiaplayer:main
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TABLE I
Parameters considered in the experiments with their description, default value, discrete domain and continuous domain

Param. Description
Default

Discrete domain
Continuous

value domain
C Exploration constant for the UCB selection 0.2 {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} [0, 1]
ε Probability of selecting a random action with MAST 0.4 {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} [0, 1]

K
Equivalence parameter of GRAVE (note that with

250 {0, 10, 50, 100, 250, 500, 750, 1 000, 2 000,∞} [0, 2000]
K = 0 the selection strategy becomes pure UCT)

Ref
Visit threshold used by GRAVE to choose the ancestor

50 {0, 50, 100, 250, 500, 1 000, 10 000,∞} [0, 10000]
from which to compute the AMAF values

V O
When selecting a move with UCT or GRAVE in state

0.01 {0.001, 0.005, 0.01, 0.015, 0.02, 0.025} [0, 0.025]s, select a random move a among the ones with
Q(a, s) ∈ [maxa(Q(a, s))− V O,maxa(Q(a, s))]

T
During selection at node s, if s has less than T visits,

0 {0, 5, 10, 20, 30, 40, 50, 100, 200,∞} [0, 200]
use the play-out strategy to select the next action instead

tuned agents reach at least the same overall performance
of the off-line tuned agent, except SPCMA-ES. Nevertheless,
its overall performance is still very close to the one of SP.
Only in Knightthrough and Breakthrough the performance
of SPCMA-ES is much worse than the one of SP.

The agent that performs overall best is SPNTBEA.
Among all tuning agents this is the one that achieves the
highest win rate in most of the games. The performance of
the other agents, SPNMC, SPLSI and SPEA, is also better
than the one of SP in many of the games. Each of these
agents achieves the best performance in one or two of the
tested games. Particularly remarkable is the performance
of SPLSI in Quad. For this game this agent reaches a much
higher win rate than the other agents (81.2%).

C. On-line Tuning for the AP Agent

This series of experiments evaluated the application of
on-line tuning to the more advanced MCTS agent AP.
Three series of experiments were performed, where the
agents tune on-line two, four and six parameters, respec-
tively. Table III shows the results obtained by each of the
agents that use one of the allocation strategies against the
agent that is tuned manually off-line.

When tuning two parameters, other than the combina-
tion K and Ref , we tried tuning the combination C and
ε, but the latter achieved a worse performance. For this
reason, only results for K and Ref are reported. Looking
at the results in the first part of the table, for two tuned
parameters all allocation strategies achieve at least the
performance of the off-line tuned agent. APNTBEA reaches
the highest overall win percentage. However, if compared

TABLE II
Win percentage of on-line tuned SP agent with different
allocation strategies against off-line tuned SP agent

Game SPNMC SPLSI SPEA SPNTBEA SPCMA-ES
3DTicTacToe 42.9(±4.18) 48.9(±4.12) 43.6(±4.16) 48.0(±4.13) 42.9(±4.11)
Breakthrough 61.0(±4.28) 51.2(±4.39) 51.0(±4.39) 61.0(±4.28) 35.6(±4.20)
Knightthrough 48.0(±4.38) 35.2(±4.19) 40.0(±4.30) 48.8(±4.39) 20.8(±3.56)

Chinook 39.4(±3.41) 40.6(±3.50) 56.1(±3.58) 65.7(±3.37) 58.9(±3.51)
ChineseCheckers3 45.0(±4.35) 40.7(±4.29) 44.6(±4.34) 46.8(±4.36) 42.5(±4.32)

Checkers 69.4(±3.83) 47.6(±4.17) 70.9(±3.79) 74.6(±3.63) 48.7(±4.17)
Connect 5 39.6(±3.24) 45.9(±3.37) 45.6(±3.42) 46.0(±3.28) 42.0(±3.51)

Quad 37.5(±4.04) 81.2(±3.22) 50.9(±4.10) 43.8(±4.12) 58.0(±4.11)
SheepAndWolf 44.0(±4.36) 52.2(±4.38) 47.0(±4.38) 44.4(±4.36) 49.2(±4.39)

TTCC4 2P 69.0(±3.97) 60.9(±4.24) 70.9(±3.88) 73.3(±3.80) 57.1(±4.28)
TTCC4 3P 48.2(±4.28) 45.7(±4.23) 45.8(±4.26) 44.4(±4.20) 46.1(±4.26)
Connect 4 51.1(±4.21) 79.7(±3.36) 62.8(±4.06) 58.3(±4.11) 71.9(±3.77)
Pentago 63.0(±4.16) 63.2(±4.10) 66.2(±4.04) 69.8(±3.90) 63.5(±4.13)
Reversi 49.3(±4.32) 41.6(±4.23) 55.5(±4.31) 48.8(±4.32) 44.1(±4.29)

Avg Win% 50.5(±1.12) 52.5(±1.12) 53.6(±1.12) 55.3(±1.11) 48.7(±1.12)

TABLE III
Win percentage of on-line tuned AP agent with different
allocation strategies against off-line tuned AP agent, for

increasing numbers of tuned parameters

Game APNMC APLSI APEA APNTBEA APCMA-ES

Tuning K and Ref
3DTicTacToe 47.2(±4.10) 42.0(±4.00) 52.0(±4.13) 46.0(±4.11) 41.5(±4.00)
Breakthrough 51.4(±4.39) 40.8(±4.31) 47.8(±4.38) 48.6(±4.39) 35.2(±4.19)
Knightthrough 58.0(±4.33) 49.6(±4.39) 46.2(±4.37) 46.8(±4.38) 47.2(±4.38)

Chinook 56.6(±4.04) 55.0(±4.11) 60.2(±3.98) 63.5(±3.95) 65.0(±3.88)
ChineseCheckers3 52.8(±4.36) 49.4(±4.37) 52.6(±4.36) 51.0(±4.37) 44.2(±4.34)

Checkers 44.2(±4.06) 48.2(±4.11) 47.8(±4.10) 47.6(±4.13) 41.8(±4.04)
Connect 5 44.6(±3.12) 49.2(±3.16) 46.2(±3.08) 45.7(±3.05) 42.9(±3.17)

Quad 57.0(±4.14) 64.3(±3.91) 60.4(±3.99) 60.1(±4.05) 52.2(±4.14)
SheepAndWolf 50.4(±4.39) 49.4(±4.39) 53.2(±4.38) 52.2(±4.38) 50.8(±4.39)

TTCC4 2P 49.2(±4.23) 52.0(±4.25) 52.9(±4.22) 51.5(±4.19) 44.4(±4.22)
TTCC4 3P 48.4(±4.21) 53.0(±4.21) 49.5(±4.26) 48.4(±4.26) 43.0(±4.22)
Connect 4 54.1(±4.12) 53.3(±4.14) 55.3(±4.15) 55.6(±4.18) 50.8(±4.12)
Pentago 54.1(±4.25) 48.5(±4.26) 56.2(±4.17) 55.3(±4.21) 51.9(±4.18)
Reversi 48.0(±4.32) 45.2(±4.28) 47.1(±4.28) 46.9(±4.33) 39.4(±4.23)

Avg Win% 51.1(±1.11) 50.0(±1.11) 52.0(±1.11) 51.4(±1.12) 46.4(±1.11)

Tuning K, Ref , C and ε
3DTicTacToe 39.8(±4.05) 42.3(±4.11) 48.7(±4.15) 39.5(±4.08) 37.1(±4.00)
Breakthrough 60.6(±4.29) 37.2(±4.24) 59.8(±4.30) 55.2(±4.36) 18.2(±3.39)
Knightthrough 74.2(±3.84) 53.8(±4.37) 68.4(±4.08) 68.2(±4.09) 28.6(±3.96)

Chinook 36.7(±3.75) 24.8(±3.55) 52.3(±4.05) 51.0(±4.05) 48.9(±4.17)
ChineseCheckers3 36.9(±4.22) 36.1(±4.20) 39.5(±4.27) 42.7(±4.32) 40.3(±4.29)

Checkers 37.8(±3.91) 19.7(±3.28) 42.4(±4.00) 40.4(±4.06) 30.2(±3.84)
Connect 5 30.7(±3.11) 40.3(±3.27) 29.1(±2.95) 28.6(±3.07) 20.3(±2.68)

Quad 37.9(±4.04) 75.6(±3.56) 35.3(±3.98) 51.9(±4.21) 45.9(±4.09)
SheepAndWolf 45.2(±4.37) 49.0(±4.39) 47.6(±4.38) 44.8(±4.36) 47.4(±4.38)

TTCC4 2P 44.6(±4.25) 22.6(±3.60) 45.4(±4.25) 49.7(±4.20) 34.4(±4.08)
TTCC4 3P 40.4(±4.17) 47.3(±4.24) 43.2(±4.21) 43.1(±4.18) 45.4(±4.26)
Connect 4 42.9(±4.15) 59.1(±4.18) 50.1(±4.19) 46.8(±4.20) 49.4(±4.24)
Pentago 38.8(±4.07) 48.8(±4.22) 41.7(±4.16) 43.5(±4.15) 41.2(±4.16)
Reversi 39.8(±4.24) 27.1(±3.83) 42.9(±4.28) 45.1(±4.33) 34.9(±4.12)

Avg Win% 43.3(±1.11) 41.7(±1.11) 46.2(±1.12) 46.5(±1.12) 37.3(±1.09)

Tuning K Ref , C, ε, T and VO
3DTicTacToe 27.3(±3.71) 28.3(±3.74) 35.2(±3.99) 38.6(±4.05) 36.1(±3.89)
Breakthrough 28.6(±3.96) 23.0(±3.69) 37.4(±4.25) 31.6(±4.08) 18.0(±3.37)
Knightthrough 46.2(±4.37) 28.4(±3.96) 45.6(±4.37) 50.2(±4.39) 39.2(±4.28)

Chinook 18.3(±3.21) 9.5(±2.23) 21.7(±3.40) 31.6(±3.94) 48.6(±4.22)
ChineseCheckers3 28.0(±3.92) 41.1(±4.30) 30.2(±4.01) 28.0(±3.92) 35.9(±4.19)

Checkers 17.7(±3.13) 19.3(±3.25) 17.2(±3.06) 20.9(±3.42) 19.6(±3.32)
Connect 5 24.6(±2.98) 41.2(±3.31) 25.5(±2.89) 33.2(±3.26) 37.6(±3.21)

Quad 16.2(±3.02) 63.5(±4.01) 15.2(±3.00) 17.2(±3.13) 19.0(±3.26)
SheepAndWolf 40.2(±4.30) 48.8(±4.39) 46.2(±4.37) 46.2(±4.37) 49.4(±4.39)

TTCC4 2P 26.2(±3.74) 17.9(±3.32) 28.7(±3.91) 33.6(±4.03) 25.0(±3.73)
TTCC4 3P 34.0(±4.04) 38.7(±4.18) 38.9(±4.12) 39.4(±4.15) 40.6(±4.23)
Connect 4 35.0(±3.97) 53.8(±4.15) 43.8(±4.14) 30.6(±3.89) 36.6(±4.05)
Pentago 35.2(±4.05) 40.2(±4.17) 42.3(±4.19) 42.1(±4.18) 42.8(±4.22)
Reversi 33.9(±4.08) 31.4(±4.01) 32.2(±4.02) 33.5(±4.07) 34.2(±4.11)

Avg Win% 29.4(±1.03) 34.7(±1.07) 32.9(±1.06) 34.0(±1.07) 34.5(±1.07)

with the results obtained by tuning the simpler agent SP,
in this case none of the allocation strategies seems to be
superior to all the others. Each of them is the best in a
few of the games. This suggests that it is more difficult to
tune parameters for an agent that uses a more informed
search strategy. Moreover, parameter values might have
less influence than on a less informed search strategy.

Results in the second and the third part of the table
show that for all tuning agents the overall performance
decreases with the increase in number of tuned parame-
ters. It might be that not all parameters have the same
importance and by tuning them we are introducing noise
in the process. Moreover, more parameters mean a larger



10

TABLE IV
Variation (%) of visited nodes per second of on-line tuned

AP agents with respect to off-line tuned AP agent

Game AP speed APNMC APLSI APEA APNTBEA APCMA-ES
3DTicTacToe 58731 −18.4% 0.2% −6.9% −19.7% −8.0%
Breakthrough 51089 −11.9% −3.3% −4.2% −14.6% −4.5%
Knightthrough 42691 −12.9% −2.2% −5.1% −18.7% −7.5%

Chinook 33817 −9.8% −0.5% −3.1% −11.2% −4.5%
ChineseCheckers3 106074 −27.9% −1.8% −1.4% −20.1% −5.9%

Checkers 29767 −1.4% 1.9% 1.8% 1.1% 0.9%
Connect5 37488 −10.7% 3.2% −1.9% −9.4% −4.8%

Quad 42358 −14.1% −2.6% −4.9% −15.2% −6.5%
SheepAndWolf 51036 −22.0% −1.1% −1.3% −8.6% −4.0%

TTCC42P 26936 −6.5% −1.9% −2.2% −6.2% −3.1%
TTCC43P 23462 −15.7% −2.0% 0.6% −8.1% −6.8%
Connect4 114623 −24.3% −6.0% −3.9% −23.6% −9.3%
Pentago 86132 −12.7% 0.1% 1.4% −9.0% −3.1%
Reversi 8533 −1.9% −0.5% 0.2% −0.5% −1.6%

search space, with fewer good parameter combinations.
For this reason, it could be more difficult for the tuning
agents to converge to an optimal combination and they
keep evaluating sub-optimal ones. It might also be that, by
the time they identify better parameter combinations, the
AP agent has already an advantage in the game because
it was making better decisions from the start due to
already tuned parameters. In particular, APCMA-ES is the
agent that loses the most in performance when increasing
the number of parameters to four. This strategy uses a
continuous parameter domain, so its search space increases
much more than for the other strategies. Moreover, in
GGP only a few different rewards can be obtained (e.g.
win, draw, loss). This often causes a flat fitness landscape
for CMA-ES, negatively influencing the optimization.

Despite the statistically significant worsening of the
performance in most of the games, it still seems to be
beneficial to tune four parameters for a few of them. For
Knightthrough and Breakthrough, for example, APNMC,
APEA and APNTBEA perform better than AP when tuning
four parameters rather than only two. The performance
of PLSI also increases by 18.6 points when tuning four
parameters for Quad. A reason for this might be that for
these games the fixed parameters of AP are not optimal,
but it could also be that optimal values are changing
during the search and on-line tuning detects this. To
support this hypothesis, we noticed that for different game
runs on-line tuning tends to focus on multiple parameter
combinations instead of converging always to the same.

If we compare the tuning agents with each other, for
four parameters APEA and APNTBEA show the overall best
performance, while for six parameters APLSI, APNTBEA

and APCMA-ES are the ones performing best, having a
win percentage around 34.0%. Over all the experiments,
APNTBEA seems to be the best performing agent.

An aspect worth investigating that might be influencing
the performance of the on-line tuning agents is the impact
of the overhead of selecting parameter values. Table IV
gives as reference the speed (i.e. average median of number
of visited nodes per second) of the off-line tuned AP agent.
For the self-adaptive AP agents that tune four parameters
the table reports the percentage of speed variation with
respect to off-line tuned AP. For almost all games param-
eter tuning decreases the speed, especially for APNMC and
APNTBEA. We also looked at the speed decrease for two

TABLE V
Win percentage of SPNTBEA and APNTBEA against agents
that randomize parameter values before each game run

Game
SPNTBEA APNTBEA
2 param. 2 param. 4 param. 6 param.

3DTicTacToe 58.4(±4.11) 59.3(±4.06) 65.4(±3.94) 64.0(±4.03)
Breakthrough 80.6(±3.47) 65.2(±4.18) 88.4(±2.81) 80.8(±3.46)
Knightthrough 80.6(±3.47) 55.0(±4.37) 87.2(±2.93) 83.6(±3.25)

Chinook 77.8(±2.83) 62.8(±3.91) 77.1(±3.43) 63.7(±4.04)
ChineseCheckers3 54.5(±4.35) 56.0(±4.34) 58.1(±4.31) 49.2(±4.37)

Checkers 78.9(±3.34) 59.1(±4.10) 74.7(±3.57) 57.6(±4.15)
Connect 5 62.4(±3.30) 58.5(±3.19) 46.5(±3.73) 54.5(±3.73)

Quad 41.4(±4.12) 60.6(±4.02) 54.6(±4.21) 35.5(±4.08)
SheepAndWolf 53.6(±4.38) 51.8(±4.38) 47.6(±4.38) 51.4(±4.39)

TTCC4 2P 77.1(±3.63) 62.8(±4.10) 78.8(±3.47) 71.3(±3.92)
TTCC4 3P 52.4(±4.24) 56.6(±4.24) 50.8(±4.29) 49.5(±4.30)
Connect 4 44.6(±4.20) 65.6(±4.02) 52.6(±4.23) 51.3(±4.27)
Pentago 60.3(±4.01) 61.1(±4.15) 55.4(±4.13) 57.9(±4.16)
Reversi 63.1(±4.15) 56.2(±4.27) 58.1(±4.28) 54.3(±4.32)

Avg Win% 63.2(±1.07) 59.3(±1.10) 63.9(±1.08) 58.9(±1.12)

and six parameters as well and noticed that for APLSI,
APEA and APCMA-ES it is always on average around
−0.5% to −4.9%, while for APNMC goes on average from
−2.4% for two parameters to −25.3% for six, and for
APNTBEA from −8.9% for two parameters to −12.4% for
six. This can be explained by the frequency with which
these two agents have to perform costly UCB1 evaluations
to select parameters. A decrease in speed, however, does
not seem to always imply a negative performance. By
looking at the number of iterations per second of the
agents we noticed that in many games on-line tuned AP
agents can perform more iterations than the off-line tuned
AP agent, and this might have a positive effect on the
search. The explanation for the increase in iterations might
be that the constantly changing search-control parameters
cause the agents to explore different parts of the search
space (with shorter paths) than the ones explored by
AP. This might be happening for the games of Quad
and Connect 4 with APLSI. This agent for these games
has an increase of 13% and 15% in number of iterations,
respectively, and it shows a better performance than AP.

D. On-line Parameter Tuning Validation

This series of experiments is designed to verify if on-line
parameter tuning has an advantage over fixed parameter
values when such values are performing poorly. Given
that NTBEA seems to be the allocation strategy that
performs the best in previous experiments, we consider the
SPNTBEA agent tuning two parameters and the APNTBEA

agents tuning two, four and six parameters. Each agent is
matched against the corresponding non-tuning agent that,
before each game run, sets its parameters to randomly
chosen values among the available ones. Each of these
non-tuning agents will randomize only the values of the
parameters that the corresponding self-adaptive agent is
tuning. Testing the tuning agents against all possible
agents with fixed settings is too time consuming because
of the large number of available parameter combinations.
Therefore, randomization is used in these experiments to
guarantee that many of the fixed parameter combinations
used by the non-tuning agents will be performing poorly.

Results are shown in Table V. For almost all games,
the self-adaptive agents have a significantly better perfor-
mance than the agents that randomize parameter values
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Fig. 2. Win percentage of APNMC, APLSI, APEA and APNTBEA

tuning six parameters with different time constraints

before each game run, proving that on-line parameter
tuning can converge to better parameter settings when the
opponent’s parameters are set to sub-optimal values.

E. Parameters Inter-dependency

All the proposed allocation strategies are designed to
take into account that there is inter-dependency among the
tuned parameters. As a validation of this inter-dependency
assumption, we also tested the performance of an agent,
APLOCAL, that tunes four parameters considering no inter-
dependency. This agent chooses which combination to
evaluate by selecting each parameter value using a sepa-
rate MAB (i.e. like using only local MABs with NMC).
The overall win percentage of this agent against AP
reached only 39.1%(±1.09), lower than the win percentage
of most of the tuning agents reported in Table III for four
parameters. It was also observed that for most games at
least one of the allocation strategies that exploit parameter
inter-dependency can significantly outperform the strategy
that does not. This can be seen as a confirmation that
there is a dependency and it should be exploited.

F. Tuning Six Parameters with Different Time Constraints

This series of experiments matches the agents that tune
on-line six parameters with a discrete parameter domain
against AP for different time constraints. Figure 2 shows
for each agent how the average win percentage over all
the tested games changes when using longer start- and
play-clock. Results for 1s differ from the ones presented
in Table III because the experiment ran on a different
server, where the agents could perform less simulations
per second. With more time all agents increase their per-
formance, even if none of them can reach the performance
of the off-line tuned agent. Among the on-line tuning
agents APNMC is the one that benefits the least from the
increase in thinking time, while APLSI is the one that
benefits the most. Overall, APNTBEA seems to be the best
performing agent, though for 5s and 10s its confidence
interval overlaps with the one of APEA.

G. Best On-Line Tuning Agent vs CadiaPlayer

In this series of experiments the off-line tuned agent AP
and the best on-line tuning agent APNTBEA are matched
against CadiaPlayer. For APNTBEA only the versions
that tune two and four parameters were tested. Table VI

TABLE VI
Win percentage of AP and APNTBEA (1s start- and

play-clock) against CadiaPlayer (10s start- and play-clock)

Game AP
APNTBEA

2 parameters 4 parameters

3DTicTacToe 92.1(±2.36) 91.9(±2.34) 90.4(±2.55)
Breakthrough 63.2(±4.23) 61.8(±4.26) 68.0(±4.09)
Knightthrough 50.8(±4.39) 52.2(±4.38) 74.8(±3.81)

Chinook 82.8(±3.22) 88.0(±2.74) 81.3(±3.28)
Checkers 90.6(±2.32) 91.2(±2.28) 87.6(±2.71)
Connect 5 70.4(±3.18) 68.2(±3.29) 45.5(±3.78)

Quad 98.8(±0.96) 99.2(±0.78) 99.4(±0.68)
SheepAndWolf 56.8(±4.35) 60.4(±4.29) 51.6(±4.38)

Connect 4 68.2(±3.90) 69.7(±3.92) 63.2(±4.06)
Pentago 73.0(±3.80) 78.1(±3.52) 71.3(±3.80)

Avg Win% 74.7(±1.16) 76.1(±1.14) 73.3(±1.19)

shows the obtained results. Four games (Chinese Check-
ers with 3 players, TTCC4 with 2 and 3 players, and
Reversi) are excluded from the experiments because Ca-
diaPlayer encountered some errors while playing them.
Results show that both AP and APNTBEA are better than
CadiaPlayer. For most of the games at least one of
the two versions of APNTBEA performs better than AP.
In line with previous results, APNTBEA that tunes four
parameters performs overall worse than APNTBEA that
tunes only two parameters, however their difference in
performance is not very large. Overall, APNTBEA that
tunes two parameters seems to be the one that performs
the best against CadiaPlayer.

VII. Conclusion and Future Work

This article presented an on-line tuning method for
search-control parameters that enables MCTS to be self-
adaptive during game play. The performance of this
method was evaluated in GGP. Five different allocation
strategies were introduced and tested for parameter tun-
ing: NMC, LSI, EA, NTBEA and CMA-ES. Results show
that, when tuning two parameters, with any of the allo-
cation strategies the agents can reach at least the same
performance or surpass the off-line tuned agent. When
tuning four parameters for the more advanced agent, the
overall performance is lower than the off-line tuned agent,
but still quite close. This is especially remarkable because
only a single run of a game is used to tune the parameters,
instead of a few hundred. On-line tuning of six parameters
is much harder, especially when the thinking time is low.
In addition, experiments show that the NTBEA on-line
tuning agents have a better performance than agents with
random fixed parameter settings. It may be concluded that
the proposed approach is useful when off-line parameter
tuning is infeasible, or in contexts like GGP, where param-
eters cannot be tuned in advance for each game, or when
off-line tuning incurs in the risk of overfitting the values
to the set of games selected for the purpose of tuning.

Comparing only the on-line tuning approaches, NTBEA
has the best performance overall. It performs well on
most of the games and for different numbers of tuned
parameters. This is likely due to the fact that it merges
the use of evolutionary computation with the multi-armed
bandit approach. It also seems that a discrete domain
for the parameters is sufficient to achieve a good perfor-
mance. CMA-ES, which uses continuous domains, was not
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performing better and, as mentioned in Section VI-C, its
performance is influenced by the flat fitness landscape.

Future work could look into improving the CMA-ES
allocation strategy by reformulating the fitness function
and by including a restart strategy. It might also be
interesting to see if other evolutionary strategies for con-
tinuous domains can perform well as allocation strategies.
In addition, the fact that the self-adaptive agents are not
able to choose which and how many parameters to tune is a
limitation of this work. These choices can be seen as extra
parameters of the agent and for this work their values were
selected manually by off-line testing. Future work should
design agents that consider these choices as part of the
on-line automatic adaptation. Moreover, performing this
decision on-line could help automatically reduce the size
of the combinatorial search space by excluding less relevant
parameters. Another possibility is to use SMAC [34], which
builds explicit regression models to predict the perfor-
mance of parameters. Finally, it would be interesting to
see if the devised on-line parameter tuning method can be
successfully applied to other domains as well.
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[23] M. Świechowski and J. Mańdziuk, “Self-adaptation of playing
strategies in General Game Playing,” IEEE Trans. Comput.
Intell. AI in Games, vol. 6, no. 4, pp. 367–381, Dec. 2014.

[24] B. Bischl et al., “Aslib: A benchmark library for algorithm
selection,” Artif. Intell., vol. 237, pp. 41–58, Aug. 2016.

[25] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis
of the Multiarmed Bandit problem,” Mach. Learn., vol. 47, no.
2-3, pp. 235–256, May 2002.

[26] D. Ashlock, Evolutionary Computation for Modeling and Opti-
mization. Springer Science & Business Media, 2006.
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