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Abstract—The optimization of power systems involves complex
uncertainties, such as technological progress, political context,
geopolitical constraints. These uncertainties are difficult to
modelize as probabilities, due to the lack of data for future
technologies and due to partially adversarial geopolitical decision
makers. Tools for such difficult decision making problems include
Wald and Savage criteria, probabilistic reasoning and Nash
equilibria. We investigate the rationale behind the use of a two-
player Nash equilibrium approach in such a difficult context,
and show that the approach is computationally efficient for
large problems. Moreover, it automatically provides a selection
of interesting decisions and critical scenarios for decision makers
and is computationally cheaper than the Wald or Savage, thanks
to the use of the sparsity of Nash equilibrium. It also has a
natural interpretation in the sense that Nature does not make
decisions taking into account our own decisions. The proposed
approach was tested on instances of an artificial power system
investment problem and can be applied to other problems, that
can be modelled as a two-player matrix game or of which a
payoff matrix can be built.

Index Terms—Power system investment, scenario-based deci-
sion making, Nash equilibrium, two-player matrix game

I. INTRODUCTION

Planning in power systems relies on many uncertainties.
Some of them, originating in nature or in consumption,
can be tackled through probabilities [1]–[4], others, such as
technology evolution, geopolitics or CO2 penalization laws,
are somewhere between stochastic and adversarial. Planning in
power systems usually involves several agents (e.g., countries),
therefore the decision making also depends on the decisions
of other agents. For instance, the United Nations Climate
Change Conference, COP21, aims at achieving a new universal
agreement on climate agreement, which is an issue of, dynamic
and changeable, cooperation and competition. Different type
of energy sources include particular uncertainties. The con-
struction of a country’s nuclear reactors or its uranium supply
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could highly depend on another more developed country. The
convention and trade wars between countries are not trivial
to predict. The curtailment of alternative energy, such as wind
and solar, may occur for several reasons including transmission
congestion (or local network constraints), global oversupply
and operational issues [5]. Each type of curtailment occurs
with different frequencies depending on the generation and
electrical characteristics of the regional and local systems.
Another example is the risk of terrorism in the congested
traffic, which cannot be represented by any stochastic model.
Scenario-based decision tools are needed to handle such un-
certainties without probabilistic model. Handling such uncer-
tainties is a challenge. For example, how should we modelize
the risk of gas curtailment, the evolution of oil prices, and the
status of uranium supply?

There exists various non-probabilistic decision-making
models, such as the Wald’s maximin criterion (maximiz-
ing the worst-case reward) and Savage’s minimax criterion
(minimizing the worst-case regret). However, the Wald’s and
Savage’s criteria are conservative. Additionally, both return
only one decision (detailed later in Section II). In this paper,
we propose to provide a set of policies for decision maker
by approximating Nash equilibrium using adversarial bandit
algorithm and the computational cost is reduced thanks to
the sparsity of Nash equilibrium. The proposed approach is
tested on instances of an artificial power investment problem
with different levels of randomness. Experimental results show
that the sparsity helps to cope with uncertainties and extract
automatically the critical scenarios and the most interesting
polices. The proposed approach is computationally efficient
for decision making in large problems.

The remainder of this paper is structured as follows. We
review and compare existing methodologies in Section II.
Section III describes our proposed approach. Empirical study
is provided in Section IV. Section V concludes.

II. BACKGROUND

To facilitate the presentation, Section II-A introduces the
notations used in this paper. In Section II-B, we review some



classic decision methods under uncertainty and their weak-
nesses/advantages in the context of power system investment,
then compare them in Section II-C.

A. Notations

The notations are as follows: S is the set of possible
scenarios and K is the set of possible policies. R is the
matrix of rewards and and the associated reward function is
Rk,s = R(k, s), i.e., R(k, s) is the reward when applying
policy k ∈ K in case the outcome of uncertainties is s ∈ S .
The reward function is also called a utility function or a payoff
function. A strategy (a.k.a. policy) is a random variable k with
values in K. A mixed strategy is a probability distribution of
possible policies; this is the general case of a strategy. A pure
strategy is a deterministic policy, i.e., it is a mixed strategy
with probability 1 for one and exactly one element, the others
having probability 0. The exploitability of a (deterministic or
randomized) strategy k is(

max
k′stochastic

min
s∈S

Ek′R(k′, s)
)
−min

s∈S
EkR(k, s). (1)

We refer to the choice of s as Nature’s choice. This does
not mean that only natural effects are involved; geopolitics
and technological uncertainties are included as well. k is
the decision we are maximizing. In fact, natural phenomena
can usually be modelized with probabilities, and are included
through random perturbations - they are not the point in this
work - contrarily to climate change uncertainties.

To make the notation simpler, we will use “m.s.” and “p.s.”
as acronyms for mixed strategy and pure strategy, respectively,
in the equations.

B. Decision making under uncertainty

1) Scenario-based planning: Maybe the most usual solu-
tion consists in selecting a small set {s1, . . . , sM} of possible
s, assumed to be most realistic. Then, for each sj , an optimal
ki is obtained. The human then checks the matrix of the
R(ki, sj) for j ∈ {1, . . . ,M} and corresponding i. Variants of
this approach have been studied in scenario planning [6]–[8].
Y. Feng [9] provides examples with more than 1000 scenarios.
When optimizing the transmission network, we must take
into account the future installation of power plants, for which
there are many possible scenarios - in particular, the durations
involved in power plant building are not necessarily larger than
constants involved in big transmission lines. The scenarios
involving large wind farms, or large nuclear power plants, lead
to very specific constraints depending on their capacities and
locations.

2) Wald criterion: The Wald criterion [10] consists in
optimizing in the worst case scenario. For a maximization
problem, the Wald-value is

vwald = max
k p.s. on K

min
s∈S

Rk,s, (2)

and the recommended policy is k realizing the max. We
choose a policy which provides the best solution (maximal re-
ward) for the worst scenario. Wald’s maximin model provides

a reward which is guaranteed in all cases. Implicitly, it assumes
that Nature will make its decision in order to bother us, and,
in a more subtle manner, Nature will make its decision while
knowing what we are going to decide. It is hard to believe, for
example, that the ultimate technological limit of photovoltaic
units will be worse if we decide to do massive investments in
solar power. Therefore, Wald’s criterion is too conservative in
many cases; hence the design of the Savage criterion.

3) Savage criterion: For a maximization problem, the
Savage-value [11] is:

vsavage = min
k p.s. on K

max
s∈S

regret(k, s), (3)

where regret(k, s) = max
k′∈K

(Rk′,s − Rk,s). The Savage
criterion is an application of the Wald’s maximin model to the
regret. Contrarily to Wald’s criterion, it does not focus on the
worst scenario. Its interpretation is that we optimize the guar-
anteed loss compared to an anticipative choice (anticipative in
the sense: aware of all future outcomes) of decision. On the
other hand, Nature still makes its decision after us, and has
access to our decision before making its decision - Nature,
in this model, can still decide to reduce the technological
progress of wind turbines just because we have decided to
do massive investments in wind power.

4) Nash equilibria: The principle of the Nash equilibrium
is that contrarily to what is assumed in Wald’s criterion, there
is no reason for Nature (the opponent) to make a decision after
us, and to know what we have decided. The Nash-value is

vnash = max
k m.s. on K

min
s∈S

EkR(k, s), (4)

where “m.s.” stands for “mixed strategy”. As a mixed strategy
is used, the fact that the max is written before the min
does not change the result [12]; vnash is also equal to

min
s r.v. on S

max
k

EkR(k, s), where “r.v.” stands for random
variable.

The exploitability (1) of a (possibly mixed) strategy k is
equivalent to

vnash −min
s∈S

EkR(k, s). (5)

A Nash strategy is a strategy with exploitability equal to 0. A
Nash strategy always exists, and it is not necessarily unique. A
Nash equilibrium, for a finite-sum problem, is a pair of Nash
strategies for us and for Nature, respectively. In the general
case, a Nash strategy is not pure. Criteria for Nash equilibria
corresponds to Nature and us making decision privately, i.e.
without knowing what each other will do. In this sense, it is
more intuitive than other criteria. Our proposed criterion is a
combination of Nash and Savage as discussed in Section III.

5) Other decision tools: Other possible tools for par-
tially adversarial decision making are multi-objective opti-
mization (i.e. for each s, there is one objective function
k 7→ R(k, s)) [13] and possibilistic reasoning [14]. These
tools rely intensively on human experts, a priori (selection
of scenarios) or a posteriori (selection in the Pareto set).



C. Comparison between various decision tools

Let us compare the various discussed policies in Table I. We
see that the Nash approach has a lower computational cost and
some advantages in terms of modeling compared to Wald or
Savage; Nature makes its decision privately (which means we
do not know the uncertainties), but not with access to our
decisions. On the other hand, its output is stochastic, which
might be a drawback for users. Pure scenario-based method
requires human expertise and lots of human resources.

It would be beneficial by selecting a number of displayed
policies and scenarios using Nash approach, based on which
the final decision will be made by human experts. In this work,
we aim at extract automatically a such set of interesting poli-
cies and crucial scenarios for decision makers. The extracted
policies achieve better performance than the decisions made
using Wald, which is more conservative.

III. OUR PROPOSAL: NASH UNCERTAINTY DECISION

Our proposed tool is as follows. We use Nash equilib-
ria, for their principled nature and (as discussed later) low
computational cost in large scale settings. We compute the
equilibria thanks to adversarial bandit algorithms, as detailed
in Section III-A. We use sparsity (Section III-B), for improving
the precision and reducing the number of pure policies in our
recommendation. The resulting algorithm (detailed in Section
III-C) has the following advantages: (i) It is fast; this is not
intuitive, but Nash equilibria, in spite of the complex theories
behind this concept, can be approximated quickly, without
computing the entire matrix of R. A pioneering work in this
direction was [15]; within logarithmic terms and dependency
in the precision, the cost is roughly the square root of the size
of the matrix. (ii) It naturally provides a submatrix of R, for
the best k and the most critical s.

We believe that such outcomes are natural tools for in-
cluding in platforms for simulating large-scale power systems
involving huge uncertainties.

A. Computing Nash equilibria with adversarial bandit algo-
rithms

For the computational cost issue for computing Nash equi-
libria, there exist algorithms reaching approximate solutions
much faster than the exact linear programming approach [16].
Some of these fast algorithms are based on the bandit formal-
ism. The multi-armed bandit problem [17]–[19] is a model
of exploration/exploitation trade-offs, aimed at optimizing the
expected payoff. Let us define an adversarial multi-armed
bandit with K ∈ N+ (K > 1) arms and let K denote the
set of arms. Let T = {1, . . . , T} denote the set of time steps,
with T ∈ N+ a finite time horizon. At each time step t ∈ T ,
the algorithm chooses it ∈ K and obtains a reward Rit,t. The
reward Rit,t is a mapping (K, T ) 7→ R.

The generic adversarial bandit is detailed in Algorithm 1. In
the case of adversarial problems, when we search for a Nash
equilibrium for a reward function (k, s) 7→ R(k, s), two bandit
algorithms typically play against each other. The decision
making process is modelled as playing a two-player game. One

of them is Nature, and the other plays our role. At the end,
our bandit algorithm recommends a (possibly mixed) strategy
over the K arms. This recommended distribution is often the
empirical distribution of play during the games against the
Nature bandit. A related work is the use of approximated Nash
equilibria for selecting random seeds to boost AI agents in
playing fully and partially observable board games [20], [21].

Such a fast approximate solution can be provided by Exp3
(Exponential weights for Exploration and Exploitation) [22]
and its variant Exp3.P [23], presented in Algorithm 2. Exp3
has the same efficiency as the Grigoriadis and Khachiyan
method [15] for finding approximate Nash equilibria, and can
be implemented with two bandits playing one against each
other, e.g. one for us and one for Nature. Note that Exp3.P
is not anytime: it requires the time horizon in order to initialize
some input meta-parameters.

Algorithm 1 Generic adversarial multi-armed bandit. The
problem is described through the arm set K, the budget T ,
and most importantly the get reward method, i.e. the mapping
R : (K, T ) 7→ R, where T = {1, . . . , T}.
Require: a time horizon (computational budget) T ∈ N+

Require: a set of arms K
Require: a probability distribution π on K

1: for t← 1 to T do
2: Select arm it ∈ K based upon π
3: Get reward Rit,t
4: Update the probability distribution π using Rit,t
5: end for

B. Sparsity of Nash equilibrium

Teytaud and Flory [25] proposed a truncation technique
on sparse problem. Considering the Nash equilibria for two-
player finite-sum matrix games, if the Nash equilibrium of the
problem is sparse, the small components of the solution can be
removed and the remaining submatrix is solved exactly. This
technique can be applied to some adversarial bandit algorithm
such as Grigoriadis’ algorithm [15], Exp3 [22] or Inf [26].
The properties of this sparsity technique are as follows.
Asymptotically in the computational budget, the convergence
to the Nash equilibria is preserved [25]. The computation time
is lower if there exists a sparse solution [27]. The support of
the obtained approximation has at most the same number of
pure policies and often far less [25]. Essentially, we get rid
of the random exploration part of the empirical distribution of
play.

C. Overview of our method

A high level view of our method is given in Algorithm 3. All
the algorithmic challenge is hidden in the computation engine,
tExp3.P (detailed in Algorithm 4), obtained by applying the
truncation technique [25] (lines 13-20 of Algorithm 4) to
Exp3.P (previously presented in Algorithm 2).



TABLE I: Comparison between several tools for decision making under uncertainty. K = |K| is the number of possible
investment policies, S = |S| is the number of scenarios, K ′ (� K) is the number of displayed policies, and S′ (� S) is the
number of displayed scenarios.

Method Extraction of policy Extraction of scenario Computational cost Interpretation
Scenario-based Handcrafted Handcrafted K′ × S′ Human expertise.

Wald One One per policy K × S Nature decides later, minimizing our reward.
Savage One One per policy K × S Nature decides later, maximizing our regret.
Nash Nash-optimal Nash-optimal (K + S)× log(K + S) Nature decides privately, before us.

Algorithm 2 Exp3.P : variant of Exp3, proved to have a high
probability bound on the weak reward [24]. η and γ are two
input parameters.

Require: η ∈ R
Require: γ ∈ (0, 1]
Require: a time horizon (computational budget) T ∈ N+

Require: K ∈ N+ is the number of arms
1: y ← 0
2: for i← 1 to K do . initialization
3: ωi ← exp(ηγ3

√
T
K )

4: end for
5: for t← 1 to T do
6: for i← 1 to K do
7: pi ← (1− γ) ωi∑K

j=1 ωj
+ γ

K

8: end for
9: Generate it according to (p1, p2, . . . , pK)

10: Compute reward Rit,t
11: for i← 1 to K do
12: if i == it then
13: R̂i ←

Rit,t
pi

14: else
15: R̂i ← 0
16: end if
17: ωi ← ωi exp

(
γ
3K (R̂i +

η

pi
√
TK

)
)

18: end for
19: end for
20: return probability distribution (p1, p2, . . . , pK)

Algorithm 3 The Sparse-Nash algorithm for solving decision
making problems under uncertainty.

Require: A family K of possible decisions (e.g., investment
policies)

Require: A family S of scenarios
Require: A mapping (k, s) 7→ Rk,s, providing the rewards,

where k ∈ K and s ∈ S
1: Run tExp3.P on the mapping R, get a probability distri-

bution on K and a probability distribution on S
2: Output k1, . . . , km the policies with positive probability

and s1, . . . , sn the scenarios with positive probability.
Emphasize the policy with highest probability

3: Output the matrix of R(ki, sj) for i ≤ m and j ≤ n

Algorithm 4 tExp3.P , combining Exp3.P and the truncation
method. α is the truncation parameter.

Require: Rm×n, matrix defined by mapping (i, j) 7→ Ri,j

Require: a time horizon (computational budget) T ∈ N+

Require: α, truncation parameter
1: Run Exp3.P during T iterations; get an approximation

(p, q) of the Nash equilibrium
2: ζ = max

i∈{1,...,m}
(Tpi)

α

T . compute the threshold for p

3: for i← 1 to m do . truncation
4: if pi ≥ ζ then
5: p′i = pi
6: else
7: p′i = 0
8: end if
9: end for

10: for i← 1 to m do
11: p′′i =

p′i∑m
j=1 p

′
j

12: end for
13: ζ ′ = max

i∈{1,...,n}
(Tqi)

α

T . compute the threshold for q

14: for i← 1 to n do . truncation
15: if qi ≥ ζ ′ then
16: q′i = qi
17: else
18: q′i = 0
19: end if
20: end for
21: for i← 1 to n do
22: q′′i =

q′i∑n
j=1 q

′
j

23: end for
24: return p′′ and q′′ as an approximate Nash equilibrium of

the problem

IV. EXPERIMENTS AND DISCUSSIONS

We propose a simple model of investments in power sys-
tems. Our model is not supposed to be super realistic, it is
aimed at being easy to reproduce.

A. Power investment problem

We consider each investment policy, sometimes called ac-
tion or decision, a vector

k = (C,F,X, S,W,P, T, U,N,A) ∈ {0, 1
2
, 1}10.



A scenario is a vector

s = (Z,WB,PB, TB,XB,UB, SB,CC,NT ) ∈ {0, 1
2
, 1}9.

The parameters and detailed corresponding descriptions of
policy variables and scenario variables are provided in Tables
IIa and IIb, respectively.

Let S be the set of possible scenarios and K be the set
of possible policies. The utility function R is a mapping
(K,S) 7→ R. Given decision k ∈ K and scenario s ∈ S , a
reward can be computed by

R(k, s) =
2

3
(1 + rand) · (N(1− Z)/5

− cost · (N + U + T + P +W + S +X + F + C)

+ c · ((X == XB) + (C! = CC) + (F ! = NT ) + (P == PB))

+ 7XB ·X +W (1 +WB)(SB +
√
S)/2

+ 3P (PB + SB)− 4C · CC
− F ·NT + S(1− Z) + P · Z + U · UB
+ T · S · (1 + TB − SB/2)− F ·NT
+ A · (1 +W + P − 2SB)),

(6)

where rand is a uniform random generator in the range ∈
(0, 1), cost and c are meta-parameters. The meta-parameter
c determines how sensitive the reward is to the disasters and
breakthrough of technologies.

This provides a reward function R(k, s), with which we
can build a matrix R of rewards. However, with a ternary
discretization for each variable we get a huge matrix, that we
will not construct explicitly - more precisely, it would be im-
possible to construct it explicitly with a real problem involving
hours of computation for each R(k, s). Fortunately, approx-
imate algorithms can solve Nash equilibria with precision ε
with O(K log(K)/ε2) requests to the reward function [19],
i.e. far less than the quadratic computation time K2 needed
for reading all entries in a matrix of size K2.

B. Experimental setting

We perform experiments on the designed noisy invest-
ment problem (6) and apply the algorithm tExp3.P us-
ing the input parameter values η = 2

√
log KT

ε and

γ = min(0.6, 2
√

3K log(K)
5T ) proposed by Busa-Fekete and

Kégl [28].
We consider policies and scenarios in discrete domains:

K = {0, 12 , 1}
10, S = {0, 12 , 1}

9. The reward matrix R310×39

can be defined by Ri,j = R(ki, sj), where ki denotes
the ith policy in K and si denotes the jth scenario in S
(∀i ∈ {1, . . . , 310}, ∀j ∈ {1, . . . , 39}). Note that the reward is
noisy as previously mentioned. Thus, each line of the matrix
is a possible policy and each column is a scenario, Ri,j is
the stochastic reward obtained by apply the policy ki to the
scenario sj .

Experiments are performed for different numbers of time
steps in the bandit algorithms, i.e. we consider T simula-
tions for each T ∈ {1, 10, 50, 100, 500, 1000} · K. There-
fore, for each T , the input meta-parameters η and γ are
different, as they depend on the budget T . In the entire

paper, when we show an expected reward R(k, s) for some
s and for k learned by one of our methods, we refer to
10, 000 independent trials; R(k, s) are played for 10, 000
randomly drawn pairs (kin , sjn) i.i.d. according to the random
variables in and jn proposed by the considered policies.
The performance is the average reward of these 10, 000
trials R(ki1 , sj1), . . . , R(ki10000 , sj10000). There is an addi-
tional averaging, over learning. Namely, each learning (i.e.
the sequence of Exp3 iteration for approximating a Nash
equilibrium) is repeated 100 times. The meta-parameters cost
is set to 1 and c is set to {1, 2, . . . , 10} in our experiments.
The reward matrix is normalized in the experiments due to
the assumptions when recommending the theoretically optimal
values for the parameters η and γ in Exp3.P .

C. Experimental results and discussions

We present the the sparsity level (i.e. the number of pure
policies in the support of the obtained approximation), the
robust score (defined as the worst of the rewards against pure
policies) and the proxy exploitability (defined as the difference
between the best robust score in the table, minus the robust
score) with c = 1 and c = 10 in Tables III and IV, respectively.

1) Sparsity helps in various horizons: Teytaud and
Flory [25] proposed α = 0.7 as truncation parameter and
Auger et al. [27] used the same value. In both of our testcases
(c.f. Tables III and IV), α = 0.9 does not provide good results
when T = K, however α = 0.7 is always better than the
baseline, to which the truncation technique is not applied (rows
with heading “NT” in Tables III and IV). We validate the good
performance of α = 0.7.

We observe that when the number of simulations is bigger
than the cardinality of the search domain, i.e. the number of
possible pure policies, then α ' 0.9 leads to better empirical
mean reward against the pure policies. For example, for the
testcase with c = 1, α = 0.9 outperforms the other values of
α at most of time; when the budget is huge (T = 1000K),
α = 0.99 provides better results.

2) The parameters of Exp3.P : When learning with few
simulations (T = K), the non-truncated solutions and non-
sparse solutions are as weak as a random strategy. Along with
the increment of simulation times, the non-truncated solutions
and non-sparse solutions become stronger, but still weaker
than the truncated solutions. Sparsity level “0.01” means that
one and only one solution of the 100 learnings has one
element above the threshold ζ, the other 99 solutions of the 99
learnings have no element above the threshold ζ. This situation
is not far from the non-truncated or non-sparse case. If the
solution is sparse, we get a better empirical mean reward even
with a small horizon, i.e. the tExp3.P succeeds in finding
better pure policies.

We see that truncated algorithms outperform their non-
truncated counterparts, in particular, truncation clearly shows
its strength when the number of simulations is small in front
of the size of search domain.



TABLE II: Parameters and descriptions of policy variables (k) and scenario (s) in the designed model of power investment.

(a) Parameters and descriptions of policy variables (k).

k ∈ {0, 1
2
, 1} Corresponding investment

C Coal
F Nuclear fission
X Nuclear fusion
S Supergrids
W Wind power
P PV units
T Solar thermal
U Unconventional renewable
N Nanogrids
A massive storage in Scandinavia

(b) Parameters and descriptions of scenario (s).

s ∈ {0, 1
2
, 1} Nature’s action

Z Massive geopolitical issues
WB Wind power technological breakthrough
PB PV Units breakthrough
TB Solar thermal breakthrough
XB Fusion breakthrough
UB Unconventional renewable breakthrough
SB Local storage breakthrough
CC Climate change disaster
NT Nuclear terrorism

TABLE III: Results for reward matrix R computed with c = 1. In these tables, the result is the average value of 100 learnings.
The reward matrix is normalized in the experiments. The standard deviation is shown after ±. “NT” means that the truncation
technique is not applied; “non-sparse” means that all elements of the solution provided are above the threshold ζ. Top:
Average sparsity level (over 310 = 59049 arms), i.e. number of pure policies in the support of the obtained approximation,
of solutions provided by Exp3.P in power investment problem. Middle: Robust score (to be maximized) using different
truncation parameter α for solutions provided by Exp3.P in power investment problem. The robust score is the worst of
the rewards against pure policies. Bottom: Proxy exploitability (to be minimized) using different truncation parameter α for
solutions provided by Exp3.P in power investment problem. The proxy exploitability is the difference between the best robust
score in the table, minus the robust score.

α
Average sparsity level over 310 = 59049 arms

T = K T = 10K T = 50K T = 100K T = 500K T = 1000K
0.1 13804.380 ± 52.015 non-sparse non-sparse non-sparse non-sparse non-sparse
0.3 2810.120 ± 59.083 non-sparse non-sparse non-sparse non-sparse non-sparse
0.5 395.920 ± 15.835 non-sparse non-sparse 59048.960 ± 196.946 49819.430 ± 195.016 non-sparse
0.7 43.230 ± 2.624 58925.340 ± 26.821 55383.140 ± 150.057 46000.020 ± 277.653 9065.180 ± 159.610 non-sparse
0.9 3.600 ± 0.260 992.940 ± 64.474 796.500 ± 41.724 503.600 ± 24.927 97.670 ± 5.445 52632.820 ± 522.505

0.99 1.110 ± 0.031 2.250 ± 0.171 2.500 ± 0.180 2.310 ± 0.156 1.790 ± 0.121 6.700 ± 0.612

α
Robust score

T = K T = 10K T = 50K T = 100K T = 500K T = 1000K
NT 4.922e-01 ± 5.649e-07 4.928e-01 ± 1.787e-06 4.956e-01 ± 4.016e-06 4.991e-01 ± 5.892e-06 5.221e-01 ± 1.404e-05 4.938e-01 ± 1.687e-06
0.1 4.948e-01 ± 5.739e-05 4.928e-01 ± 1.787e-06 4.956e-01 ± 4.016e-06 4.991e-01 ± 5.892e-06 5.221e-01 ± 1.404e-05 4.938e-01 ± 1.687e-06
0.3 5.004e-01 ± 1.397e-04 4.928e-01 ± 1.787e-06 4.956e-01 ± 4.016e-06 4.991e-01 ± 5.892e-06 5.221e-01 ± 1.404e-05 4.938e-01 ± 1.687e-06
0.5 5.059e-01 ± 2.272e-04 4.928e-01 ± 1.787e-06 4.956e-01 ± 4.016e-06 4.991e-01 ± 5.891e-06 5.242e-01 ± 5.491e-05 4.938e-01 ± 1.687e-06
0.7 5.054e-01 ± 1.327e-03 4.928e-01 ± 3.835e-06 4.965e-01 ± 3.896e-05 5.031e-01 ± 1.016e-04 5.317e-01 ± 9.573e-05 4.938e-01 ± 1.687e-06
0.9 4.281e-01 ± 6.926e-03 5.137e-01 ± 4.199e-04 5.151e-01 ± 5.007e-04 5.140e-01 ± 4.965e-04 5.487e-01 ± 9.413e-04 4.960e-01 ± 1.828e-04

0.99 3.634e-01 ± 8.191e-03 4.357e-01 ± 6.873e-03 4.612e-01 ± 5.380e-03 4.683e-01 ± 4.834e-03 5.242e-01 ± 3.302e-03 5.390e-01 ± 3.167e-03
Pure 3.505e-01 ± 7.842e-03 3.946e-01 ± 7.181e-03 4.287e-01 ± 6.203e-03 4.489e-01 ± 5.410e-03 5.143e-01 ± 3.597e-03 4.837e-01 ± 5.558e-03

α
Proxy exploitability

T = K T = 10K T = 50K T = 100K T = 500K T = 1000K
NT 1.369e-02 2.092e-02 1.946e-02 1.492e-02 2.669e-02 4.525e-02
0.1 1.109e-02 2.092e-02 1.946e-02 1.492e-02 2.669e-02 4.525e-02
0.3 5.485e-03 2.092e-02 1.946e-02 1.492e-02 2.669e-02 4.525e-02
0.5 0.000e+00 2.092e-02 1.946e-02 1.492e-02 2.454e-02 4.525e-02
0.7 4.328e-04 2.091e-02 1.854e-02 1.083e-02 1.705e-02 4.525e-02
0.9 7.778e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 4.304e-02

0.99 1.425e-01 7.806e-02 5.385e-02 4.564e-02 2.456e-02 0.000e+00
Pure 1.554e-01 1.191e-01 8.638e-02 6.503e-02 3.443e-02 5.537e-02



TABLE IV: Results for reward matrix R computed with c = 10. In these tables, the result is the average value of 100 learnings.
The reward matrix is normalized in the experiments. The standard deviation is shown after ±. “NT” means that the truncation
technique is not applied; “non-sparse” means that all elements of the solution provided are above the threshold ζ. Top:
Average sparsity level (over 310 = 59049 arms), i.e. number of pure policies in the support of the obtained approximation,
of solutions provided by Exp3.P in power investment problem. Middle: Robust score (to be maximized) using different
truncation parameter α for solutions provided by Exp3.P in power investment problem. The robust score is the worst of
the rewards against pure policies. Bottom: Proxy exploitability (to be minimized) using different truncation parameter α for
solutions provided by Exp3.P in power investment problem. The proxy exploitability is the difference between the best robust
score in the table, minus the robust score.

α
Average sparsity level over 310 = 59049 arms

T = K T = 10K T = 50K T = 100K T = 500K T = 1000K
0.1 6394.625 ± 84.308 non-sparse non-sparse non-sparse non-sparse non-sparse
0.3 1337.896 ± 40.491 non-sparse non-sparse non-sparse non-sparse non-sparse
0.5 206.146 ± 12.647 non-sparse non-sparse non-sparse non-sparse non-sparse
0.7 25.563 ± 2.045 non-sparse non-sparse non-sparse 59048.750 ± 0.250 non-sparse
0.9 3.729 ± 0.353 42616.313 ± 1476.644 47581 ± 1015.506 38361.182 ± 1091.373 4510.125 ± 726.595 58323.125 ± 157.971

0.99 1.208 ± 0.072 4.479 ± 0.575 5.333 ± 0.565 6.000 ± 0.969 2.875 ± 1.076 8.500 ± 2.204

α
Robust score

T = K T = 10K T = 50K T = 100K T = 500K T = 1000K
NT 1.151e-01 ± 6.772e-08 1.151e-01 ± 2.175e-07 1.153e-01 ± 3.707e-07 1.154e-01 ± 5.797e-07 1.167e-01 ± 2.046e-06 1.152e-01 ± 1.297e-06
0.1 1.158e-01 ± 1.843e-05 1.151e-01 ± 2.175e-07 1.153e-01 ± 3.707e-07 1.154e-01 ± 6.019e-07 1.167e-01 ± 2.046e-06 1.152e-01 ± 1.297e-06
0.3 1.160e-01 ± 3.441e-05 1.151e-01 ± 2.175e-07 1.153e-01 ± 3.707e-07 1.154e-01 ± 6.019e-07 1.167e-01 ± 2.046e-06 1.152e-01 ± 1.297e-06
0.5 1.166e-01 ± 9.751e-05 1.151e-01 ± 2.175e-07 1.153e-01 ± 3.707e-07 1.154e-01 ± 5.797e-07 1.167e-01 ± 2.046e-06 1.152e-01 ± 1.297e-06
0.7 1.165e-01 ± 6.176e-04 1.151e-01 ± 2.175e-07 1.153e-01 ± 3.707e-07 1.154e-01 ± 5.797e-07 1.167e-01 ± 2.051e-06 1.152e-01 ± 1.297e-06
0.9 1.068e-01 ± 3.176e-03 1.156e-01 ± 4.586e-05 1.160e-01 ± 6.348e-05 1.172e-01 ± 9.722e-05 1.266e-01 ± 3.829e-04 1.152e-01 ± 4.288e-06

0.99 8.423e-02 ± 3.118e-03 1.119e-01 ± 2.316e-03 1.189e-01 ± 1.888e-03 1.202e-01 ± 2.101e-03 1.145e-01 ± 4.519e-03 1.186e-01 ± 7.684e-04
Pure 7.810e-02 ± 2.570e-03 8.354e-02 ± 2.710e-03 9.327e-02 ± 2.202e-03 9.658e-02 ± 2.097e-03 1.120e-01 ± 3.625e-03 8.755e-02 ± 6.497e-03

α
Proxy exploitability

T = K T = 10K T = 50K T = 100K T = 500K T = 1000K
NT 1.494e-03 4.594e-04 3.592e-03 4.772e-03 9.903e-03 3.388e-03
0.1 7.727e-04 4.594e-04 3.592e-03 4.772e-03 9.903e-03 3.388e-03
0.3 5.838e-04 4.594e-04 3.592e-03 4.772e-03 9.903e-03 3.388e-03
0.5 0.000e+00 4.594e-04 3.592e-03 4.772e-03 9.903e-03 3.388e-03
0.7 9.391e-05 4.594e-04 3.592e-03 4.772e-03 9.903e-03 3.388e-03
0.9 9.758e-03 0.000e+00 2.860e-03 2.992e-03 0.000e+00 3.371e-03

0.99 3.236e-02 3.647e-03 0.000e+00 0.000e+00 1.211e-02 0.000e+00
Pure 3.848e-02 3.204e-02 2.559e-02 2.362e-02 1.463e-02 3.103e-02

V. CONCLUSION

We proposed in Section III a new criterion (based on Nash
equilibria and sparsity) and a new methodology (based on
adversarial bandits and sparsity) for decision making with
uncertainty. Technically speaking, we tuned a parameter-free
adversarial bandit algorithm tExp3.P , for large scale prob-
lems, efficient in terms of performance itself, and also in terms
of sparsity. tExp3.P performed better than Exp3.P (without
truncation). Moreover, tExp3.P with truncation parameter
α = 0.7, which is theoretically guaranteed [25], got stable
performance in the experiments.

From a user point of view, we get the following advantages:
(i) Natural extraction of interesting policies and critical sce-
narios. However, we point out that α = .7 provides stable
(and proved) results, but the extracted submatrix becomes
easily readable (small enough) with larger values of α. (ii)
Faster computational cost than the Wald or Savage classical
methodologies. Our methodology only requires a mapping
R : (k, s) 7→ R(k, s), which computes the outcome if we
use the policy k and the outcome is the scenario s. Multiple
objective functions can be handled: if we have two objectives

(e.g. economy and greenhouse gas pollution), we can just
duplicate the scenarios, one for which the criterion is economy,
and one for which the criterion is greenhouse gas. Given
a problem, the algorithm will display a matrix of rewards
for different policies and for several scenarios (including,
by the trick above, several criteria such as particular matter,
greenhouse, and cost).

As a summary, we get a fast criterion, faster than Wald’s or
Savage’s criteria, with a natural interpretation. The algorithm
naturally provides a matrix of results, namely the matrix
of outcomes in the most interesting decisions and for the
most critical scenarios. These decisions and scenarios are also
equipped with a ranking.
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