
Self-adaptive Decomposition and Incremental
Hyperparameter Tuning Across Multiple Problems

Jialin Liu and Xin Yao†
Shenzhen Key Laboratory of Computational Intelligence

University Key Laboratory of Evolving Intelligent Systems of Guangdong Province
Department of Computer Science and Engineering

Southern University of Science and Technology
Shenzhen 518055, China

Email: liujl@sustech.edu.cn, xiny@sustech.edu.cn

Abstract—The Capacitated Arc Routing Problem (CARP) is
a NP-hard combinatorial optimisation problem with numerous
real-world applications. Several divide-and-conquer approaches,
controlled by one or more hyperparameters, have been proposed
to tackle large-scale CARPs. The tuning of hyperparameters can
be computationally expensive due to the lack of priori knowledge,
the size of the configuration space, and the time required for solv-
ing a CARP instance. Motivated by this time consuming task, we
propose a scalable approach based on self-adaptive hierarchical
decomposition (SASAHiD) to scale up existing methods. We take
a state-of-the-art decomposition method for large-scale CARPs
called SAHiD as an example to carry out experiments on two
sets of real-world CARP instances with hundreds to thousands
of tasks. The results demonstrate that SASAHiD outperforms
SAHiD significantly with fewer hyperparameters, thus the di-
mension of associated configuration space is reduced. Moreover,
we propose an incremental hyperparameter tuning approach
across multiple problem instances to learn the hyperparameters
of SASAHiD on a set of instances with different sizes. SASAHiD
with optimised hyperparameters achieves better or competitive
results with the SASAHiD using default hyperparameters when
solving problem instances that it has never seen in the training
set.

Index Terms—Capacitated arc routing problem, self-
adaptive decomposition, incremental hyperparameter tuning,
permutation-based optimisation

I. INTRODUCTION

The capacitated arc routing problem (CARP) [1], [2] is a
NP-hard combinatorial problem with numerous real-world
applications. The CARP aims to allocate efficiently a fleet
of vehicles and select the optimal set of routes to deliver a
given set of items (e.g., costumers or goods) on time to the
given destination with the constraint that the total demand of
tasks served on any route does not exceed the vehicle capacity,
where each route refers to a subset of arcs or edges in a
transport network. The objective is to minimise the total cost

†X. Yao (xiny@sustech.edu.cn) is the corresponding author.
This work was supported by National Key R&D Program of China

(Grant No. 2017YFC0804003), National Natural Science Foundation of
China (Grant No. 61906083, 61976111), Shenzhen Peacock Plan (Grant
No. KQTD2016112514355531), the Science and Technology Innovation
Committee Foundation of Shenzhen (Grant No. ZDSYS201703031748284,
JCYJ20180504165652917) and the Program for University Key Laboratory
of Guangdong Province (Grant No. 2017KSYS008).

while satisfying all the demands or costumers. Different from
the well-known vehicle routing problem (VRP) [3], the tasks
locate on the edges in the CARP. Examples include the urban
waste collection, snow removal and street salting problems [4].
Because of its huge number of real-world applications, several
variants of CARPs have been studied, which differ from the
characteristic of capacity, demand, and time windows [2], [5].

A large number of associated algorithms have been pro-
posed to solve CARP and its variants, including exact meth-
ods and heuristics methods [2]. However, only a few recent
work [6]–[9] focus on the large-scale CARP, which is more
computationally expensive to evaluate a solution or find an op-
timal solution, but is more relevant to real-world applications.
The above work rely on some decomposition approaches,
such as the cooperative coevolution (CC) [6]–[8] and the
most recently proposed hierarchical decomposition (HD) [9].
These decomposition approaches usually consist of one or
more hyperparameters, e.g., the number of subcomponents and
population size in the CC, and the number of clusters in the
HD. The hyperparameters are usually set as arbitrarily chosen
values or values chosen using grid search (e.g., [9]) or some
preliminary testing [6]. Sophisticated algorithm configuration
methods are rarely used due to the lack of priori knowledge
(e.g., dependencies between parameters), the size of the con-
figuration space, and the time required for solving a large-scale
CARP instance or finding a good approximate solution.

In this work, we propose a scalable approach based on
self-adaptive hierarchical decomposition (SASAHiD) scheme,
which successfully eliminates a hyperparameter compared to
the state-of-the-art hierarchical decomposition. In particular,
the proposed SASAHiD can be beneficial for permutation-
based optimisation problems, such as vehicle routing and
scheduling problems. Therefore some real-world large-scale
CARP instances, generated using 2 cities’ road maps, are
considered as test problems in this work. To examine the
performance of SASAHiD, we compare it to the SAHiD
proposed by [9] to carry out empirical studies, because SAHiD
outperformed 3 state-of-the-art algorithms on solving large-
scale CARPs with up to 3584 tasks. The results show that
our SASAHiD, consisted of fewer parameters, achieves better

or similar performance than SAHiD on the test problems.
Moreover, we propose an incremental hyperparameter tuning
approach across multiple problem instances and perform ex-
periments using SMAC [10] as configurator. The hyperparam-
eters are optimised in an incremental manner on the instance
set of one city, with which the SASAHiD obtains better or
competitive results when solving instances of another city that
have never been seen before. To the best of our knowledge,
we are the first to propose a self-adaptive hierarchical de-
composition scheme and perform incremental hyperparameter
tuning approach across multiple problem instances on the
proposed SASAHiD, in particular, for solving large-scale
CARP instances.

The rest of this paper is structured as follows. We start
by introducing the background of this work. We then raise
the conducted questions and propose the SASAHiD and the
incremental hyperparameter tuning approach across multiple
problem instances. Experiments are designed for answering
our conducted questions and validate the proposed approaches.
Then the experimental results are summarised and discussed.
Finally we concludes the work and point out some potential
future directions.

II. BACKGROUND

A. Capacitated Arc Routing Problem

We consider the undirected version of capacitated arc rout-
ing problem (CARP) [1], [3], which is defined as follows.
Let G = (V,E) be a connected undirected graph where
V = {0, . . . , n} is the set of vertices, the vertex v0 is the
depot and the others correspond to n customers. E refers to
the edge set. Each edge e ∈ E has a cost c(e) > 0, which
could be a distance or time. If there is a task on this edge, a
positive demand d(e) is associated to e, otherwise, d(e) = 0.
The task set T is the ensemble of edges with d(e) > 0. The
objective of CARPs is to allocate efficiently a fleet of vehicles,
which start and end at the identical depot v0, and select the
optimal set of routes to serve tasks while the total demand
of tasks served on any route does not exceed a given vehicle
capacity Q.

Because of its huge number of real-world applications,
several variants of CARPs have been studied [2], [5]. However,
the studied CARP instances usually consist of a small number
of tasks, until very recently, [9] used two sets of real-world
CARP instances with up to 3584 tasks. In this work, we test
our approaches on the sets of large-scale CARP instances used
by [9]1, which are the sets with highest task number in the
literature.

1) Benchmark Sets.: Two benchmark sets, namely Hefei
and Beijing, have been generated from the map of the Hefei
city and the central area of Beijing city in China by [9].
Readers are referred to the Section V.A and Table 1 of [9]
for more about the sets. Highlights are given as follows.
Hefei set consists of 850 vertices and 1212 edges (main roads

1Instances of the two sets are available at http://staff.ustc.edu.cn/∼ketang/
codes/LSCARPset.zip, provided by the authors of [9].

in the map), while Beijing set has 2820 vertices and 3584
edges. 10 instances have been sampled from Hefei set (Beijing
set) by selecting uniformly at random a certain number of
edges as tasks, denoted as Hefei-i (Beijing-i), respectively,
where i ∈ {1, . . . , 10}. The index i indicates the percentage
of edges to be selected as tasks with a factor of 10. Thus,
Hefei-1 consists of |T1| = 121 tasks and Hefei-10 consists of
|T10| = 1212 tasks. The vehicle capacity is 9000 and 25000 for
Hefei and Beijing instances, respectively. The minimal number
of vehicles needed to serve all the tasks varies from 7 to 69 [9].

B. Decomposition Approaches for Scaling Up

A large number of algorithms have been proposed to
solve CARPs and its variants, including the exact methods
(branch-and-bound, branch-and-cut, and branch-and-pricing
algorithms), heuristics and meta-heuristics, such as cellular
Genetic Algorithm [11]. Most search methods suffer the
scalability problem. Divide-and-conquer is a natural idea to
scale up existing search methods, while the potential depen-
dencies among variables for nonseparable problems are often
ignored. For this reason, [12] proposed a group-based problem
decomposition approach, EACC, which is widely used to
tackle large-scale CARPs [6]–[8]. Cooperative-coevolution-
based methods divide a problem to groups of subproblems in
a linear way. When the dimension of the problem scales up,
either the number of groups or the number of subproblems
in a group will increase significantly. An alternative is using
a hierarchical structure. Tang et al. [9] proposed a scalable
approach based on hierarchical decomposition, called SAHiD.
SAHiD outperformed 3 state-of-the-art algorithms, Variable
Neighbourhood Search [13], Tabu Search Algorithm 1 [14]
and RDG-MAENS [7] on solving large-scale CARPs [9]. For
its outstanding performance, we compare SASAHiD to SAHiD
in this work.

C. SAHiD

The SAHiD aims to find a good permutation of tasks effi-
ciently. Given a CARP instance, it hierarchically decomposes
the tasks into subgroups of tasks and solves the induced
subproblems recursively [9]. Each of the nodes at the bottom
of the hierarchy represents a subgroup of ordered tasks, corre-
sponded to a permutation of tasks, which is further considered
as a virtual task. Each node on a nonbottom layer groups the
virtual tasks of its children nodes and obtains a new virtual
task of a larger size. The only root node (top layer) contains
exactly one virtual task which is a permutation of all the
tasks. A tree hierarchy of virtual tasks is built recursively and
the number of tasks (or virtual tasks on nonbottom layers)
decreases exponentially from the bottom to the top layer. To
group virtual tasks, a well-known clustering technique, K-
means algorithm [15], is applied, considering the virtual task
with minimal average deadheading cost to other virtual tasks
as the centroid of a cluster. The clustering results of K-
means algorithm highly depend on the number of clusters (i.e.,
groups), K. Tang et al. [9] set Kl as an integer generated
uniformly at random between 1 and dβKl−1e, where β is

a hyperparameter ∈ (0, 1) and Kl denotes the number of
virtual tasks to be grouped at layer l. The bottom layer is
indexed by 1 and K1 equals to |T |, the number of actual tasks
of the given CARP instance. After generating a permutation
of tasks or virtual tasks, a solution for this permutation can
be obtained by splitting the permutation into feasible routes
using the Ulusoy’s splitting procedure [9]. Then a local search
algorithm is used to further improve the solution.

1) Configuration of Hyperparameters: SAHiD has 5 hy-
perparameters: (i) β ∈ (0, 1], the shrink parameter introduced
by the K-means algorithm; (ii) α ∈ (0, 1), the probability
of partitioning a route introduced by the Ulusoy’s splitting
procedure; (iii) θ ∈ (0, 1), the acceptance threshold; (iv) σ a
number of non-improved iterations to accept a worse solution,
introduced by the Local Search; and (v) p, the number of
routes to be selected to form an unordered list of tasks to
be modified, introduced by the merge-split operator [16]. We
would like to refer the audiences to [9] for more details about
the parameters. [9] tested the performance of SAHiD with
uniformly sampled values for α and β on 4 CARP instances
with different numbers of tasks. σ and p were set as 10, 000
and 2. We consider α, β and θ in this work as σ depends on the
number of possible iterations given a budget, and increasing
p will lead to an increment of runtime.

D. Automatic Algorithm Configuration

A non-parameter-free algorithm or policy has one or more
hyperparameters with continuous, discrete (including boolean)
or categorical values, which have significant or minor im-
pact on the algorithm performance. Algorithm configuration
aims to search for the optimal values for hyperparameters
with which the algorithm achieves optimal performance on a
specific instance. Understanding the trend and landscape of
the configurations will be helpful to study the parameters’
sensibilities and exploit how the parameters work (together)
on an algorithm. However, in real-world applications, it is not
always possible to model the search space and the landscape is
usually unknown. Moreover, an evaluation of a configuration
could be very expensive due to the problem or the nature
of the algorithm. The algorithm configuration is usually a
complex black-box or grey-box optimisation problem without
or with little priori knowledge. Different approaches have
been proposed for automated algorithm configuration, and
differ in if offline or online; if parallel or sequential; and
if explicit models (also called response surfaces) are used or
not. Examples of popular algorithm configuration approaches
are GGA [17], F-Race [18], ParamILS [19], and SMAC [10].
[20] reviewed the advanced state-of-the-art in predicting the
algorithm performance for hard combinatorial problems. [21]
compared two racing algorithms, F-race and DW-Race, on
configuring a stochastic local search (SLS) method for solving
a university course timetabling problem [22]. Solving large-
scale CARPs is more computationally expensive. In this work,
we set our configurator as the SMAC [10], a state-of-the-
art automatic algorithm configuration method which builds
iteratively explicit regression models based on random forests.

SMAC is selected as it has been shown to have outstanding
performance for optimising parameters both on single and
multiples problem instances [10].

III. SELF-ADAPTIVE HIERARCHICAL DECOMPOSITION

The SAHiD has shown its strength on two new large CARP
benchmark sets, mainly thanks to the HD scheme it has
used. We propose a scalable approach based on self-adaptive
hierarchical decomposition (SASAHiD) scheme to achieve fast
problem decomposition yet with fewer hyperparameters, thus
smaller configuration space.

Fig. 1. Hierarchical decomposition. Ki, the number of clusters at layer i, is an
integer randomly generated between 1 and a self-adaptive upper bound, as in
(3), which leads to a stochastic number of layers h at each run of SASAHiD.

The hierarchical structure is illustrated in Figure 1. SAHiD
builds recursively a tree hierarchy of virtual tasks, at each
layer of which K-means algorithm [15] is applied to group
the (virtual) tasks and create new virtual tasks (i.e., groups
or clusters). For instance, at layer 3 in Figure 1, K3 virtual
tasks, {τ31 , . . . , τ3K3

}, are created based on the K2 virtual tasks
at layer 2. SAHiD sets the cluster number Ki at layer i as
an integer randomly selected between in a random range,
formalised as follows:

∀i ≥ 2, Kmax
i = dRandomFloat(0, β)×Ki−1e, (1)
Ki = RandomInteger(1,Kmax

i), (2)

where β ∈ (0, 1) is a hyperparameter. The lowest layer i = 1
has K1 = |T | leaf nodes, where T is the set of tasks. β
guaranties a fast decreased upper bound for the number of
intermediate nodes.

However, two random value generations have been involved
in the design of cluster number, shown in (1) and (2), which
can be redundant. Additionally, when using very low value
for β, K decreases to 1 quickly given a number of tasks. We
propose a self-adaptive upper bound as shown in (3) for Ki

which also decreases exponentially from the bottom to the top
layer, and gets rid of the hyperparameter β.

∀i ≥ 2, Ki = RandomInt(1, d
√
Ki−1e), K1 = |T |. (3)

The number of hyperparameters is reduced. At the same time,
replacing a random number selection in a random range by a
random number selection in a deterministic range, will reduce
the randomness in the algorithms. We are not certain if the
double-stochastic process in the non-self-adaptive hierarchical

decomposition is beneficial or not, and how the reduced ran-
domness will affect the performance. To answer this question,
we compare the performance of SASAHiD and SAHiD on the
two benchmark sets that have been described previously.

A. Experimental Setting

Tang et al. [9] have tested the performance of SAHiD
with uniformly sampled values for α and β within (0, 1) on
4 CARP instances with different numbers of edges. It has
been observed that for instances with higher number of edges,
smaller α value (e.g., 0.1) leads to better solutions, while β
has minor impact when α is small. So the results reported in
[9] were all obtained with α = 0.1 and β = 0.1 which were
found to achieve best results on the 2 largest instances. We
want to verify if SASAHiD using same α will achieve similar
performance.

We set α = 0.1, θ = 0.1, δ = 10000 and p = 2 as in
[9] (reported in its Tables III-V). Both SAHiD and SASAHiD
are given 30mins as budget. 25 experimental trials each have
been performed, thus 50 optimisation trials in total for each of
the problem instances. As the optimal solutions for CARP in-
stances are unknown, we use the lowest cost found among the
50 trials of each CARP instance as a reference and refer to it
as ˜cost

∗
. We define a simple regret as the difference of the cost

of best-so-far solution to the best value ˜cost
∗

obtained at the
end of search, SR = cost(current best)− ˜cost

∗
. As for each

of the problem instances, the magnitude of the cost is different,
we use a normalised regret NSR = cost(current best)− ˜cost

∗

˜cost
∗ .

All the experiments presented in this paper are run on the
same computing platform Intel Xeon E5-2630 processor with
2.2GHz.

B. Results

For a closer comparison, we calculate the gap between the
average NSRs of final recommendations after 30mins by
SAHiD and SASAHiD as 4NSR = 1

n

∑n
1 NSRSASAHiD −

1
n

∑n
1 NSRSAHiD, where n refers to the number of indepen-

dent trials. Table I summarises the 4NSR and the average
NSRs of initial solutions that SAHiD and SASAHiD have
used. The NSR for an initial solution indicates how far the
initial value is to the optimal value. Additionally, the NSR
of the best solution found among 25 trials of SASAHiD is
shown on the last column. “0.00” means that the ˜cost

∗
is

found by SASAHiD, otherwise, found by SAHiD. According
to Table I, the final recommended solutions reduce the cost
for around 10% or more on average compared to the initial
solutions using either SAHD or HD, additionally, the solution
quality converges after a small amount of time. Within a fixed
optimisation budget (30mins), the average of gap between
the final recommendations of SASAHiD and SAHiD over 10
instances is minor (0.1% and 0.21%). Among 25 trials each,
SASAHiD finds better solutions 11 times out of 20 prob-
lem instances, and achieves competitive results on the other
instances. The proposed SASAHiD significantly outperforms
the original SAHiD in terms of solution quality and number
of hyperparameters, further reduces the size of configuration

space. We expect the self-adaptive hierarchical decomposition
method to help solving other permutation-based optimisation
problems more efficiently.

C. Comparison with Various SAHiD

For comparison reason, we further compare SASAHiD with
α = 0.1 to SAHiD with (α, β) ∈ {0.1, 0.3, 0.5, 0.7, 0.9}2
on Hefei-1 (121 tasks), Hefei-10 (1212 tasks), Beijing-1 (358
tasks), and Beijing-10 (3584 tasks). These 4 instances and can-
didate values for α are selected for facilitating the comparison,
as they are also presented in [9]. Results show that SASAHiD
significantly outperforms SAHiD on large-scale problems. Due
to the limited length, we only present the results of Beijing-1,
and Beijing-10 with α = 0.1, 0.5 and 0.9 in Figure 2. SAHiD
with some hyperparameter settings finds better solution than
SASAHiD with α = 0.1, however, its hyperparameter search
space is one dimension higher than SASAHiD. SASAHiD with
α = 0.1 performs significantly better than SAHiD with various
configurations on large-scale CARPs.

IV. INCREMENTAL HYPERPARAMETER TUNING ACROSS
MULTIPLE PROBLEM INSTANCES

It is unclear if the performance of SASAHiD can be further
improved by optimising hyperparameters. As SASAHiD is
designed for large-scale problems (e.g., a CARP instance with
thousands of tasks or more), it may take hours to achieve a
satisfactory solution. Thus, an evaluation of SASAHiD with
certain hyperparameter values is time-consuming and it’s not
trivial to find good setting manually. It is nature to use
some hyperparameter tuning methods and surrogate models
to predict if the performance is favourable. In particular, we
are interested in answering the following questions:

1) Are all the hyperparameters necessary or do they affect
significantly the performance of SASAHiD?

2) Can the performance of SASAHiD be further enhanced
by tuning the hyperparameters automatically?

3) Will the SASAHiD using the “optimal” hyperparameter
setting tuned on a problem instance I1 (or a set of
problem instances) achieve a satisfactory solution for an
unseen instance I2 (or an unseen set of instances)?

An extension to the question 3) is “Will SASAHiD with the
hyperparameter setting p1, tuned on instance I1, be further
improved by tuning on instance I2? And will SASAHiD with
the resulted setting p2 still perform well on instance I1?”

To answer these questions, we propose an incremental
hyperparameter tuning across multiple problem instances ap-
proach. The main procedure is as follows. A model-based
algorithm configurator T is used to tune the hyperparameter(s)
of an algorithm or solver S. At the beginning, the model
is initialised without any priori knowledge or memory. The
automatic hyperparameter tuning process starts by one call or
successive calls to the solver S on an instance I1. Periodically,
T decides to generate and evaluate hyperparameters by one
call or successive calls to the solver S on another instance I2,
while the previously learnt model is used as the initial model
at this stage. Thus, all the statistics obtained when training

TABLE I
COMPARISON OF SASAHID AND SAHID. A NEGATIVE 4NSR REFERS TO A LOWER NSR OF SASAHID, THUS BETTER PERFORMANCE THAN SAHID.

THE 2nd AND 3rd COLUMNS ILLUSTRATE THE AVERAGE NSRS OF THE RANDOMLY INITIALISED SOLUTIONS. THE LAST COLUMN REFERS TO THE
AVERAGE NSR OF FINAL RECOMMENDATIONS OF SASAHID. “0.00” MEANS THAT AT LEAST ONE OUT OF ITS 25 TRIALS FINDS A SOLUTION BETTER

THAN ALL SOLUTIONS FOUND BY SAHID. ALL THE FIGURES ARE SHOWN IN PERCENT. TO FACILITATE THE COMPARISON, WE FOLLOW THE SAME
METHODOLOGY AS IN [9]. BOLD (UNDERLINED) RESULTS INDICATE THAT SASAHID IS BETTER (WORSE, RESPECTIVELY) THAN SAHID BASED ON

WILCOXON RANK-SUM TEST WITH THE LEVEL OF SIGNIFICANCE 0.05. “w-d-l” INDICATES THE WIN-DRAW-LOSE OF SASAHID VERSUS SAHID.

Instance Initial regret (%) 4NSR Best
SAHiD SASAHiD (%) regret (%)

Hefei-1 14.54 13.14 -1.06 0
Hefei-2 14.51 14.38 0.44 0.41
Hefei-3 13.70 15.13 -0.17 0.07
Hefei-4 14.07 14.61 0.03 0
Hefei-5 14.40 13.85 -0.02 0.04
Hefei-6 13.93 13.40 0.02 0
Hefei-7 12.69 13.60 -0.10 0.34
Hefei-8 13.10 13.98 -0.18 0
Hefei-9 12.45 12.07 -0.12 0
Hefei-10 11.54 11.46 0.01 0

Number of “w-d-l” 1-8-1
Average 13.49 13.56 0.01 0.09

Instance Initial regret (%) 4NSR Best
SAHiD SASAHiD (%) regret (%)

Beijing-1 11.24 10.11 -0.48 0
Beijing-2 10.72 11.63 -1.07 0
Beijing-3 11.59 13.07 -0.21 0
Beijing-4 11.07 10.25 -0.83 0
Beijing-5 11.48 12.53 -0.41 0
Beijing-6 10.38 10.52 -0.20 0.51
Beijing-7 10.50 11.01 0.11 0.18
Beijing-8 9.42 9.98 0.02 0.08
Beijing-9 9.94 10.95 0.08 0.12
Beijing-10 9.63 10.41 0.21 0.22

Number of “w-d-l” 2-8-0
Average 10.60 11.05 0.21 0.11

Fig. 2. Comparison of SASAHiD with α = 0.1 to SAHiD with various values of α and β on instances Beijing-1 (top) and Beijing-10 (bottom). To facilitate
the comparison, an identical range for y-axis is used in all the 3 figures of each problem instance (i.e., each row).

on instance I1 are kept and re-used when starting to train on
instance I2. The model is updated in an incremental way.

We let SMAC train the model on Hefei set and validate the
recommended configurations on Beijing set. These two sets
have different structures and the Beijing instances are 3 times
bigger than the Hefei ones. The split is not performed within
single data sets but between different data sets so as to study
the transfer ability.

A. Model Training using SMAC

We use the Python implementation of SMAC (https://
github.com/automl/SMAC3) to tune the two parameters of

SASAHiD, α and θ. As the precision is less important in
both cases, we take values of α (and θ) uniformly distributed
between 0.01 and 0.99 (0.05 and 0.2, respectively) with a gap
of 0.01. Thus, a discrete search space of size 1881 is formed,
As discussed previously, the parameter settings can be com-
pared after running a small amount of time. We evaluate the
configuration by the lowest cost obtained by SASAHiD after
optimising during 30s. This is also the amount of time that [9]
have used for comparison in terms of runtime. Additionally,
the performance ranking of SAHiD instances with different
parameter settings is usually stable after 30 seconds, there
is no use comparing the very last recommendations. We can

compare the parameter settings at an earlier stage for saving
budget and stopping unlucky runs earlier. This idea has been
previously used by [23], [24] when comparing different solvers
and same solvers using different parameter settings.

B. Tuning on Hefei Benchmark

We let SMAC optimise the hyperparameters using 100
SASAHiD runs on the problem instance Hefei-1 and save the
obtained model. Then SMAC continues searching in the same
hyperparameter space and updates the restored model with
outputs of 100 SASAHiD calls on Hefei-2 using same budget,
and so on till Hefei-10, thus 10 batches of experiments are run
and a total of 1, 000 SASAHiD calls are used as optimisation
budget. The total evaluation number is much lower than the
size of search space. As the costs of solutions for different
problem instances locate in different range, we need to nor-
malise the output of SASAHiD. However, neither the bounds
nor the optimal cost is known. Therefore, before tuning using
SMAC, we run firstly SASAHiD with default parameters on
each instance for 30s, the outputs of which are then used as the
denominator for normalisation. Then, 20 SMAC optimisation
trails are run using different initial hyperparameters α0 and
θ0 as shown in Table II. The recommendations are reported
in Table II as well. During one run, the intermediate recom-
mended settings after each batch varies because of the different
instances that the model is training on. Among 20 trials, the
recommended settings differ due to the different initial points
and the stochasticity in SASAHiD and SMAC. Surprisely, after
having trained on 10 instances in an incremental way, the
setting (α, θ) = (0.39, 0.20) is recommended 10 times among
20 runs. After rounding, the following three parameter settings
are summarised, (0.40, 0.20), (0.40, 0.10) and (0.75, 0.20),
which have been recommended 10, 4 and 3 times, respectively,
out of 20 hyperparameter optimisation runs.

C. Validation on Beijing Benchmark

The three recommended parameter settings are validated
on the 10 instances of Beijing city, given a real time budget
of 30mins. As the hyperparameters have been optimised on
10 instances of Hefei sequentially, we also test the settings
on the Hefei instances with a budget of 30mins to verify if
the recommended settings still guaranty a stable performance
on Hefei-1, that has been learnt the most previously. The
lowest cost, averaged cost and the standard deviation over
25 independent trials are illustrated in Table III. To reduce
the randomness, all the settings have been used the identical
set of 25 distinct random seeds. The results obtained by
SASAHiD with α = 0.1 and θ = 0.1 are also presented for
reference, denoted as “Baseline” in Table III. Results show that
SASAHiD with setting (0.4, 0.2) performs better or as good
as SASAHiD with (0.1, 0.1) on most of the Beijing instances.
On both sets, the recommended settings enhance SASAHiD
when solving the first 5 to 7 instances (of smaller or medium
size). This is probably due to the order of instances that
have been used for training. As the evaluations of SASAHiD
have been performed on instances with indices 1 to 10, the

model is initially built using the data of evaluations on smaller
instances and is biased to better solving such instances. The
order of instances may have a significant impact. Nevertheless,
Beijing-5 has much more tasks than the CARP instances
considered in other work. For example, EGL-G benchmark
set [14] consists of up to 375 edges and 375 task, while
Beijing-5 has 3584 edges and 1792 tasks. It is also notable that
the recommended α value for SASAHiD (0.4) is much higher
than the recommended one for SAHiD (0.1). Intuitionally, this
could be a way to make up the loss of stochasticity due to the
use of a deterministic upper bound of cluster number as in (3)
instead of using a random one, determined by (1). Note that
higher value of α leads to a higher possibility of partitioning
a route in the Ulusoy’s splitting procedure.

V. CONCLUSIONS AND FUTURE WORK

The scalability is a difficult problem for searching methods
in combinatorial optimisation. Some decomposition methods,
such as cooperative co-evolution and hierarchical decomposi-
tion, have been proposed in the literature for tackling large-
scale problems. In this work, we propose a scalable approach
based on self-adaptive hierarchical decomposition scheme with
only two hyperparameters, called SASAHiD. We compare
SASAHiD to a non-self-adaptive hierarchical decomposition
method, SAHiD [9], on two real-world benchmark sets of
large-scale CARP instances. The proposed SASAHiD, with
a hyperparameter space one dimension lower than the one
of SAHiD, achieves better or similar performance to SAHiD
using various configurations. The SAHiD has been proved to
outperform 3 state-of-the-art algorithms, Variable Neighbour-
hood Search [13], Tabu Search Algorithm 1 [14] and RDG-
MAENS [7] on solving the same benchmark problems [9].
Thus, our SASAHiD naturally outperforms the 3 state-of-the-
art algorithms on the benchmark problems.

Moreover, we propose an incremental hyperparameter tun-
ing across multiple problem instances approach and use
SMAC [10] to tune the hyperparameters automatically. The
hyperparameters of SASAHiD are optimised in an incremental
manner on the instance set of one city, with which the
SASAHiD obtains better or competitive results when solving
instances of another city that have never been seen before.
To the best of our knowledge, we are the first to propose a
self-adaptive hierarchical decomposition scheme and use an
incremental hyperparameter tuning approach to perform auto-
matic hyperparameter tuning for solving large-scale CARPs.

We see several directions for future research. Evaluations
of (SA)SAHiD on large-scale problems are computationally
expensive. It would be interesting to apply some surrogate-
assisted approaches for very expensive problems [25]. A
recently proposed approach called Per Instance Algorithm
Configuration (PIAC) [26] is worth investigating to make use
of the instance features. When scaling to computationally
expensive instances, [27] selected configurations based on their
performance on a set of intermediate instances that are harder
than the training set, but easier than the testing set. For future
work, we would like to apply these methods to (SA)SAHiD

TABLE II
RECOMMENDED CONFIGURATION BY SMAC AFTER LEARNING SEQUENTIALLY ON HEFEI INSTANCES. FOR EXAMPLE, THE 1st ROW OF (HEADED

“HEFEI-1”) REFERS TO THE CONFIGURATIONS RECOMMENDED AFTER LEARNING ON HEFEI-1, THUS AFTER 100 EVALUATIONS; WHILE THE 2nd ROW OF
(HEADED “HEFEI-2”) REFERS TO THE CONFIGURATIONS RECOMMENDED AFTER LEARNING ON HEFEI-1 AND HEFEI-2, THUS AFTER 200 EVALUATIONS.

θ0 = 0.05 θ0 = 0.10

Instance α0 = 0.01 α0 = 0.25 α0 = 0.50 α0 = 0.75 α0 = 0.99 α0 = 0.01 α0 = 0.25 α0 = 0.50 α0 = 0.75 α0 = 0.99

α θ α θ α θ α θ α θ α θ α θ α θ α θ α θ
Hefei-1 0.90 0.08 0.97 0.09 0.89 0.09 0.94 0.09 0.85 0.20 0.86 0.19 0.50 0.18 0.85 0.17 0.96 0.18 0.91 0.12
Hefei-2 0.90 0.08 0.97 0.09 0.91 0.10 0.94 0.09 0.85 0.20 0.86 0.19 0.50 0.18 0.85 0.17 0.75 0.19 0.95 0.11
Hefei-3 0.37 0.09 0.76 0.19 0.39 0.20 0.39 0.20 0.75 0.18 0.39 0.20 0.39 0.09 0.39 0.20 0.49 0.05 0.39 0.20
Hefei-4 0.37 0.09 0.76 0.19 0.39 0.20 0.39 0.20 0.75 0.18 0.39 0.20 0.39 0.09 0.39 0.20 0.49 0.05 0.39 0.20
Hefei-5 0.37 0.09 0.76 0.19 0.39 0.20 0.39 0.20 0.75 0.18 0.39 0.20 0.39 0.09 0.39 0.20 0.49 0.05 0.39 0.20
Hefei-6 0.37 0.09 0.76 0.19 0.39 0.20 0.39 0.20 0.75 0.18 0.39 0.20 0.39 0.09 0.39 0.20 0.49 0.05 0.39 0.20
Hefei-7 0.37 0.09 0.76 0.19 0.39 0.20 0.39 0.20 0.75 0.18 0.39 0.20 0.39 0.09 0.39 0.20 0.49 0.05 0.39 0.20
Hefei-8 0.37 0.09 0.76 0.19 0.39 0.20 0.39 0.20 0.75 0.18 0.39 0.20 0.39 0.09 0.39 0.20 0.49 0.05 0.39 0.20
Hefei-9 0.37 0.09 0.76 0.19 0.39 0.20 0.39 0.20 0.75 0.18 0.39 0.20 0.39 0.09 0.39 0.20 0.49 0.05 0.39 0.20
Hefei-10 0.37 0.09 0.76 0.19 0.39 0.20 0.39 0.20 0.75 0.18 0.39 0.20 0.39 0.09 0.39 0.20 0.49 0.05 0.39 0.20

θ0 = 0.15 θ0 = 0.20

Instance α0 = 0.01 α0 = 0.25 α0 = 0.50 α0 = 0.75 α0 = 0.99 α0 = 0.01 α0 = 0.25 α0 = 0.50 α0 = 0.75 α0 = 0.99

α θ α θ α θ α θ α θ α θ α θ α θ α θ α θ
Hefei-1 0.91 0.12 0.91 0.12 0.75 0.10 0.74 0.20 0.86 0.06 0.94 0.09 0.88 0.08 0.96 0.07 0.95 0.05 0.76 0.15
Hefei-2 0.91 0.12 0.91 0.12 0.92 0.19 0.83 0.15 0.86 0.06 0.99 0.15 0.88 0.08 0.96 0.07 0.97 0.07 0.76 0.15
Hefei-3 0.39 0.20 0.75 0.19 0.26 0.20 0.36 0.09 0.40 0.10 0.37 0.20 0.39 0.20 0.88 0.05 0.39 0.20 0.39 0.20
Hefei-4 0.39 0.20 0.75 0.19 0.26 0.20 0.36 0.09 0.40 0.10 0.37 0.20 0.39 0.20 0.88 0.05 0.39 0.20 0.39 0.20
Hefei-5 0.39 0.20 0.75 0.19 0.26 0.20 0.36 0.09 0.40 0.10 0.37 0.20 0.39 0.20 0.88 0.05 0.39 0.20 0.39 0.20
Hefei-6 0.39 0.20 0.75 0.19 0.26 0.20 0.36 0.09 0.40 0.10 0.37 0.20 0.39 0.20 0.88 0.05 0.39 0.20 0.39 0.20
Hefei-7 0.39 0.20 0.75 0.19 0.26 0.20 0.36 0.09 0.40 0.10 0.37 0.20 0.39 0.20 0.88 0.05 0.39 0.20 0.39 0.20
Hefei-8 0.39 0.20 0.75 0.19 0.26 0.20 0.36 0.09 0.40 0.10 0.37 0.20 0.39 0.20 0.88 0.05 0.39 0.20 0.39 0.20
Hefei-9 0.39 0.20 0.75 0.19 0.26 0.20 0.36 0.09 0.40 0.10 0.37 0.20 0.39 0.20 0.88 0.05 0.39 0.20 0.39 0.20
Hefei-10 0.39 0.20 0.75 0.19 0.26 0.20 0.36 0.09 0.40 0.10 0.37 0.20 0.39 0.20 0.88 0.05 0.39 0.20 0.39 0.20

on solving large-scale CARPs. Moreover, we have trained the
model on problem instances of smallest to largest size, which
is a simple but naive instance selection policy. Results in Table
III imply that the order of instances used for training may
play an essential role. As a future work, we are interested in
exploring selection policies in our incremental hyperparameter
tuning approach for deciding the next instance to train from a
set of instances.

ACKNOWLEDGMENT

The authors would like to thank Prof. Ke Tang for providing
the source code of SAHiD and data sets.

REFERENCES

[1] B. L. Golden and R. T. Wong, “Capacitated arc routing problems,”
Networks, vol. 11, no. 3, pp. 305–315, 1981.

[2] S. Wøhlk, A Decade of Capacitated Arc Routing. Boston, MA:
Springer US, 2008, pp. 29–48. [Online]. Available: https://doi.org/10.
1007/978-0-387-77778-8 2

[3] G. B. Dantzig and J. H. Ramser, “The truck dispatching problem,”
Management science, vol. 6, no. 1, pp. 80–91, 1959.

[4] H. Handa, L. Chapman, and X. Yao, Robust Salting Route
Optimization Using Evolutionary Algorithms. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 497–517. [Online]. Available:
https://doi.org/10.1007/978-3-540-49774-5 22

[5] M. Fadzli, N. Najwa, and M. Luis, “Capacitated arc routing problem
and its extensions in waste collection,” in International Conference on
Mathematics, Engineering and Industrial Applications 2014 (ICoMEIA
2014), M. Ramli, A. Junoh, N. Roslan, M. Masnan, and M. Kharuddin,
Eds., vol. 1660. American Institute of Physics, 2015.

[6] Y. Mei, X. Li, and X. Yao, “Decomposing large-scale capacitated arc
routing problems using a random route grouping method,” in Evolution-
ary Computation, 2013 IEEE Congress on. IEEE, 2013, pp. 1013–1020.

[7] ——, “Cooperative coevolution with route distance grouping for large-
scale capacitated arc routing problems,” IEEE Transactions on Evolu-
tionary Computation, vol. 18, no. 3, pp. 435–449, 2014.

[8] ——, “Variable neighborhood decomposition for large scale capaci-
tated arc routing problem,” in Evolutionary Computation, 2014 IEEE
Congress on. IEEE, 2014, pp. 1313–1320.

[9] K. Tang, J. Wang, X. Li, and X. Yao, “A scalable approach to capaci-
tated arc routing problems based on hierarchical decomposition,” IEEE
transactions on cybernetics, vol. 47, no. 11, pp. 3928–3940, 2017.

[10] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-
based optimization for general algorithm configuration,” in International
Conference on Learning and Intelligent Optimization. Springer, 2011,
pp. 507–523.

[11] E. Alba and B. Dorronsoro, “Computing nine new best-so-far solutions
for capacitated vrp with a cellular genetic algorithm,” Information
Processing Letters, vol. 98, no. 6, pp. 225–230, 2006.

[12] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization
using cooperative coevolution,” Information Sciences, vol. 178, no. 15,
pp. 2985–2999, 2008.

[13] M. Polacek, K. F. Doerner, R. F. Hartl, and V. Maniezzo, “A variable
neighborhood search for the capacitated arc routing problem with
intermediate facilities,” Journal of Heuristics, vol. 14, no. 5, pp. 405–
423, 2008.

[14] J. Brandão and R. Eglese, “A deterministic tabu search algorithm for the
capacitated arc routing problem,” Computers & Operations Research,
vol. 35, no. 4, pp. 1112–1126, 2008.

[15] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the fifth Berkeley sympo-
sium on mathematical statistics and probability, vol. 1, no. 14. Oakland,
CA, USA, 1967, pp. 281–297.

[16] K. Tang, Y. Mei, and X. Yao, “Memetic algorithm with extended neigh-
borhood search for capacitated arc routing problems,” IEEE Transactions
on Evolutionary Computation, vol. 13, no. 5, pp. 1151–1166, 2009.

[17] C. Ansótegui, M. Sellmann, and K. Tierney, “A gender-based genetic
algorithm for the automatic configuration of algorithms,” in International
Conference on Principles and Practice of Constraint Programming.
Springer, 2009, pp. 142–157.

TABLE III
VALIDATION RESULTS GIVEN 30mins AS OPTIMISATION BUDGET. TO FACILITATE THE COMPARISON, WE FOLLOW THE SAME METHODOLOGY AS IN [9].
BOLD (UNDERLINED) RESULTS INDICATE THAT THE TUNED SASAHID WITH CORRESPONDING SETTING IS BETTER (WORSE) THAN THE BASELINE (I.E.,

SASAHID WITH (0.1, 0.1)) BASED ON WILCOXON RANK-SUM TEST WITH THE LEVEL OF SIGNIFICANCE 0.05. “W-D-L” INDICATED THE
WIN-DRAW-LOSE OF THE SASAHID WITH TUNED PARAMETER SETTING VERSUS THE BASELINE. THE LOWEST AVERAGE COST IS MARKED WITH “*” .

Re-test on 10 Hefei instances using 30mins each trial

Id |T | Baseline (0.40, 0.20) (0.40, 0.10) (0.75, 0.20)

Best Average Std Best Average Std Best Average Std Best Average Std
1 121 246877 248719 1228 246401 247222 425 246753 247349 344 246611 247060 273
2 242 437991 441503 2069 435977 438287 1379 436966 438572 874 435452 437876 965
3 364 585247 590264 2281 583967 587341 1676 581889 587100 1916 585299 588396 1559
4 485 752406 759806 3068 749454 756703 2899 749454 757083 2888 755645 763964 3636
5 606 963432 975360 4688 968203 976117 4113 968203 975982 3858 981240 991007 5659
6 727 1098660 1109319 5584 1100100 1112229 7506 1100280 1112280 7470 1132290 1145915 7171
7 848 1306340 1314498 5480 1314000 1330085 8186 1314000 1330141 8168 1365470 1382972 7086
8 970 1478710 1486581 6155 1496430 1514146 9955 1496430 1514122 9947 1553130 1567486 8211
9 1091 1647760 1663170 7503 1685830 1712361 12503 1685830 1712361 12503 1739000 1763253 10422

10 1212 1803250 1814804 6118 1864300 1880489 8132 1864300 1880489 8132 1917310 1928001 5883
4-2-4 4-2-4 3-0-7

Validation on 10 Beijing instances using 30mins each trial

Id |T | Baseline (0.40, 0.20) (0.40, 0.10) (0.75, 0.20)

Best Average Std Best Average Std Best Average Std Best Average Std
1 358 774940 784300 5501 767420 772886 3702 764538 769370 2780 764853 767502 1996
2 717 1168070 1183056 7114 1147000 1167685 7121 1144050 1165256 6819 1154030 1163978 5495
3 1075 1586410 1612158 10717 1580850 1593422 7492 1571880 1589013 7698 1578930 1589864 7773
4 1433 1924780 1940109 11111 1908420 1922964 6937 1905140 1916427 7058 1901180 1920891 9223
5 1792 2277420 2308528 15153 2271500 2300198 17511 2270860 2291656 13386 2284010 2308899 17037
6 2151 2664810 2701230 16289 2663620 2702558 20291 2663420 2693417 17087 2689170 2730445 28749
7 2509 2975670 3003097 13241 2998660 3025902 20043 2983980 3014393 22490 3031640 3079966 24386
8 2868 3247490 3276867 18945 3260250 3301394 19223 3248900 3291093 19749 3306710 3374332 31713
9 3226 3579810 3622531 21690 3607040 3656403 24421 3594160 3642613 23516 3698200 3752642 25491

10 3584 3881420 3916252 17038 3934020 3985646 25706 3925070 3979544 24873 4015910 4081212 27968
5-1-4 5-2-3 4-1-5

[18] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle, “F-race and
iterated f-race: An overview,” in Experimental methods for the analysis
of optimization algorithms. Springer, 2010, pp. 311–336.

[19] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle, “Paramils:
an automatic algorithm configuration framework,” Journal of Artificial
Intelligence Research, vol. 36, pp. 267–306, 2009.

[20] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown, “Algorithm runtime
prediction: Methods & evaluation,” Artificial Intelligence, vol. 206, pp.
79–111, 2014.

[21] S. Becker, J. Gottlieb, and T. Stützle, “Applications of racing algorithms:
An industrial perspective,” in International Conference on Artificial
Evolution (Evolution Artificielle). Springer, 2005, pp. 271–283.

[22] S. Abdullah, E. K. Burke, and B. McCollum, “A hybrid evolutionary
approach to the university course timetabling problem,” in 2007 IEEE
Congress on Evolutionary Computation. IEEE, 2007, pp. 1764–1768.

[23] M.-L. Cauwet, J. Liu, and O. Teytaud, “Algorithm portfolios for noisy

optimization: Compare solvers early,” in International Conference on
Learning and Intelligent Optimization. Springer, 2014, pp. 1–15.

[24] M.-L. Cauwet, J. Liu, B. Rozière, and O. Teytaud, “Algorithm portfolios
for noisy optimization,” Annals of Mathematics and Artificial Intelli-
gence, vol. 76, no. 1-2, pp. 143–172, 2016.

[25] H. Tong, C. Huang, J. Liu, and X. Yao, “Voronoi-based efficient
surrogate-assisted evolutionary algorithm for very expensive problems,”
in 2019 IEEE Congress on Evolutionary Computation. IEEE, June
2019, pp. 1996–2003.

[26] N. Belkhir, J. Dréo, P. Savéant, and M. Schoenauer, “Per instance
algorithm configuration of cma-es with limited budget,” in Proceedings
of the Genetic and Evolutionary Computation Conference. ACM, 2017,
pp. 681–688.

[27] J. Styles, H. H. Hoos, and M. Müller, “Automatically configuring
algorithms for scaling performance,” in Learning and Intelligent Op-
timization. Springer, 2012, pp. 205–219.

