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Abstract—Noisy optimization refers to the optimization of
objective functions corrupted by noise, which happens in many
real-world optimization problems. Resampling has been widely
used in evolutionary algorithms for noisy optimization. It has
been theoretically proved that evolutionary algorithms with
resampling can achieve a “log-log convergence” slope of − 1

2
when

optimizing functions corrupted by unbiased additive noise [1].
Various dynamic resampling rules have been proposed in the
literature. However, determining their optimal hyperparameter
values for reaching the optimal slope is hard. In this work, we
reach this slope using resampling rules optimized numerically
though automatic parameter tuning. We have found a parameter-
free yet effective new resampling rule depending on the iteration
number and the problem dimension. This simple parameter-
free resampling rule is compared to several state-of-the-art rules
and achieved superior performance on functions corrupted by
asymmetric additive noise or in case of very high noise levels.

Index Terms—Noisy optimization, resampling rule, additive
noise, evolution strategies, automatic parameter tuning

I. INTRODUCTION

Resampling, i.e., explicitly averaging multiple evaluations
of an identical solution, have been widely used in evolution-
ary algorithms for solving noisy optimization problems [2],
[3]. Various dynamic resampling rules, some of which, with
parameters have been studied in the literature and have been
mathematically or empirically proved to be effective within
different evolutionary algorithms for problems corrupted by
constant variance noise and multiplicative noise [1], [3]–[7].

In this paper, we combine several resampling rules to a dy-
namic stopping rule, then apply automatic parameter tuning for
optimizing the resampling rule of an evolutionary algorithm
for noisy optimization. A parameter-free resampling rule is
obtained by parameter tuning plus rounding of the obtained
parameter values. The resulting resampling rule is simple but
efficient on optimizing functions corrupted by additive noise of
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different strengths. Then, this rule is compared to several state-
of-the-art algorithms on functions corrupted by symmetric and
asymmetric noise. The comparison experiments are carried
out using the open source Python3 library nevergrad [8] for
derivative-free optimization. Our rule performs well in case of
high noise or misleading noise models.

The paper is organized as follows. Section II introduces the
framework including some related work in noisy optimization.
Our proposed method is detailed in Section III. Section
IV provides some experimental results on automatic design
of resampling rules. Then, Section V presents the resulting
approximate resampling rule and compares it to some state-
of-the-art algorithms. Finally, Section VI concludes this paper.

II. BACKGROUND

A. Noisy black-box optimization in continuous domain

Noisy optimization is the optimization of objective func-
tions corrupted by noise. A black-box noisy optimization
consists in searching for the optimum (e.g. minimum) x∗ =
argminx∈Rd Ewf(x,w) of some noisy objective function
f : Rd 7→ R by successive calls to f without using any
internal property of the objective function. f is a random
process, and equivalently it can be viewed as a mapping
(x,w) 7→ f ′(x,w) where x ∈ Rd and w is a random variable
independently sampled at each call to f . We aim at finding a
good approximation of x∗. Various “classical” algorithms have
been proposed for noisy optimization in continuous domains.
We here consider noisy evolutionary optimization.

a) Optimization criterion: Simple Regret (SR) is usually
used as a criterion for estimating the performance of noisy
optimization algorithms. x̃m is the approximate optimum
obtained by the optimization algorithm after m function eval-
uations. SRm, defined as SRm = Ewf(x̃m) − Ewf(x

∗), is
the SR after m evaluations. The slope of SR [1] is defined as:

slope(SR) = lim sup
m

log (Ewf(x̃m,w)− Ewf(x
∗,w))

logm
.

(1)



b) Noise models: Two main categories of noise have
been proposed and investigated in the literature: prior and
posterior. Prior noise refers to the perturbation of solution (x)
and happens before the evaluation process. Its noisy objective
function can be expressed as f(x,w) = ft(x + w), where
ft(·) denotes the true noise-free objective function. The prior
noise is mostly considered in the discrete domain [9], [10],
which is beyond the scope of this paper. Posterior noise
refers to the perturbation of objective function, thus evaluation
process. Various posterior noise models have been studied [2],
[3]. The two main categories that have been considered mostly
in the continuous domain and sometimes in the discrete
domain are multiplicative noise of variance scaled with the
objective function (“weakly noisy”) [4], [5], [11]–[16], where
f(x,w) = ft(x) ∗ w or f(x,w) = ft(x) ∗ (1 + w), and
additive noise of constant variance (“strongly noisy”) [1], [4]–
[7], where f(x,w) = ft(x) +w. In this work, we focus on
the strongly noisy case in the continuous domain, i.e., the
variance of the noise does not decrease near the optimum,
which requires more resampling to reduce the probability of
misranking the solutions when searching around the optimum.
The most popular model is the additive Gaussian noise [3].

B. Noise handling techniques

The two main methods for handling noise in evolutionary
algorithms [17] are increasing the population size and resam-
pling (i.e., averaging multiple evaluations of a solution x).

[18] presented a technique called “mutate large, but inherit
small” (MLIS), which improved the convergence of (1, λ)-
ES. The approximation quality, i.e. the expected Euclidean
distance change toward the optimum, increased with larger
population and decreased with increasing mutation strength
(step-size). Hence, MLIS proposes to use a shrink-rescaled
parental step-size to handle the problem.

It has been theoretically proved that evolutionary algorithms
with resampling can achieve a “log-log convergence” slope
(thus slope(SR)) of − 1

2 when optimizing functions corrupted
by unbiased additive noise [1]. This means that the loga-
rithm of the simple regret, i.e., the difference between the
evaluation of current recommendation and the true optimal
value, converges linearly in proportion − 1

2 of the logarithm
of the number of evaluations. Astete et al. [19] have proved
that, when simple evolutionary strategies (simple-ES) optimize
sphere functions corrupted by additive Gaussian noise of
constant variance, the slope(SR) is lower bounded by − 1

2 .
Recently, Friedrich et al. [20] proved theoretically that when

the noise is strong enough, increasing the population size does
not help. When the noise is weak, resampling is not necessary.
Therefore, in this work, we consider approaches based on
resampling in the strongly noisy case.

Here, we consider three families of resampling methods:
(i) resampling based on the iteration number [1], [6]; (ii)
resampling based on the step-size [1]; and (iii) resampling
based on statistical testing [21]–[23]. The formulation of
these resampling strategies are given in Section III. All these

Algorithm 1 A modified (1+1)-ES with resampling for a min-
imization problem. N d(0, 1) denotes a standard d-dimensional
Gaussian noise. In this algorithm, xn refers to the parent at
the nth iteration.
Require: d ∈ N+ . dimension of search space
Require: a noisy fitness function f : Rd 7→ R
Require: a resampling rule r(·) : · 7→ N+

Require: σ0 > 0 . initial mutation strength (step-size)
Require: x0 ∈ Rd . initial individual

1: n← 0 . iteration number
2: m← 0 . evaluation number
3: evalsp ← 0 . parent’s evaluation number
4: yp ← 0 . parent’s empirical evaluation
5: while budget is not exhausted do
6: x′ ← xn + σ ×N d(0, 1) . generate offspring
7: rn ← r(·) . compute resampling number
8: y ← Ernf(xn) . evaluate parent r times
9: y′ ← Ernf(x′) . evaluate offspring r times

10: y ← (yp · evalsp + y · rn)/(evalsp + rn)
11: if y′ < y then . offspring is better
12: xn+1 ← x′

13: σn+1 ← 2σn
14: yp ← y′

15: evalsp ← rn
16: else . offspring is not better
17: σn+1 ← 0.84σn
18: yp ← y
19: evalsp ← evalsp + rn
20: end if
21: n← n+ 1 . increment iteration number
22: m← m+ 2rn . update evaluation number
23: end while

resampling methods are controlled by one or more parame-
ters, which affect significantly the convergence rate of noisy
optimization algorithms. The determination of the optimal
parameter values is not trivial. We aim at finding a parameter-
free but efficient resampling rule. We combine the above
resampling methods into one single formula, then tune the
parameters automatically by optimising the convergence rate
obtained using the resampling determined by the formula with
tuned parameters (Sections III and IV). A new, simple yet
effective resampling rule is found as detailed in Section V.

III. PROPOSED METHOD

Section III-A introduces some notations. Section III-B de-
scribes our modified (1+1)-Evolution Strategy with resam-
pling. Section III-C and Section III-D define some non-
adaptive and adaptive resampling rules, as well as their com-
bined formulation. Then we propose our dynamic stopping
rule in Section III-E.

A. Notations and noise model

In this paper, N+ = {1, 2, 3, . . . }. If X is a random variable,
then X(1), X(2), . . . denotes samples of independent identi-
cally distributed random variables, copies of X . To simplify



the notation, from now on, f(x) refers to an independent call
to f(x,w), the operator E refers to Ew. We denote by Erf(x)
the empirical evaluation of Ef(x) over r ∈ N+ resamplings.

In this paper, we focus on studying unbiased additive noise,
i.e., constant variance noise and independent to the noise-free
fitness value. A commonly studied noise model is Gaussian
noise, where the corresponding noisy objective function is
defined as f(x,w) = f(x) + ϕ ×N d(0, 1), where N d(0, 1)
denotes a standard d-dimensional Gaussian distribution and ϕ
refers to the noise strength, i.e. given x ∈ Rd, Varf(x) = ϕ2.
Thus, the noise has a constant variance and is independent of
x and its corresponding noise-free objective value. The noise
strength does not vanish around the optimum.

B. (1+1)-Evolution Strategy with resampling

We use a modified (1+1)-Evolution Strategy with resam-
pling as shown in Algorithm 1. The core difference is the
computation of resampling number and averaging of evalua-
tions of solution points (lines 7-10 of Algorithm 1).

C. Non-adaptive resampling rule

Astete et al. [1] have shown that the logarithm of the
distance to the optimum converges linearly in the logarithm of
the number of evaluations when using non-adaptive resampling
rules which are exponential or polynomial in the iteration
number n or polynomial in n. Liu et al. [6] have further
compared eight non-adaptive sampling rules based on the iter-
ation number and/or the dimension of the problem. The studied
non-adaptive resampling rules in [1], [6] can be summarized
into two formulas: An = dζ n

dκ e and Bn = d( ndκ )
ζe, where

κ ∈ [0,∞) and ζ ∈ (0,∞) are two control parameters. n is
the current iteration number and d is the dimension of problem.
Using these two formulas, we define the following rule:

rn = dA%n ×B1−%
n e, (2)

where % ∈ [0, 1] is an additional parameter. % determines how
to combine these two terms in resampling.

D. Adaptive resampling rule

Astete et al. [1] have proved mathematically that the log-
log convergence exists when using adaptive resampling rules
with the number of resampling polynomial in the reciprocal of
the step-size at the nth iteration, σn. We include this adaptive
resampling rule from [1] and use its variant as:

Cn = d( n
dκ

)ζσn
−ηe, (3)

where η ∈ [0,∞). This resampling rule contains Bn when
η = 0. So we can modify (2) and obtain a new formula:

r′n = dA%n × C1−%
n e. (4)

E. Stopping rule by Empirical Bernstein Bound

Sometimes, when lucky enough, there is no need to use up
the computed resampling number of evaluations to correctly
compare two solutions. We now propose an additional term,
for possibly interrupting the increase of resampling number
by Empirical Bernstein Bound [24], [25]. We first recall in
Theorem 1, the stopping rule EBStop, provided by [24].

Theorem 1 (Empirical Bernstein Bound [24]). For some real-
valued i.i.d. random variables X1, X2, . . . , Xr with mean µ
and ∀i ∈ {1, . . . , r}, |Xi| ≤ M , there exists some positive
sequence (εr)r∈N+ such that the event E = {|ErX − µ| ≤
εr, r ∈ N+} occurs with probability at least 1 − δ, where
ErX denotes 1

r

∑r
i=1Xi.

Let Xi be the difference of the ith call of f(x) and the
ith call of f(x′), f(x′) − f(x), where x and x′ are two
independent points. By Theorem 1, for all r ∈ N+, there exists
some positive sequence (εr) such as (5) such that

P
(∣∣(Erf(x)− Erf(x′))− (Ef(x)− Ef(x′))

∣∣ ≤ εr) ≥ 1−δ.

Example 1. The following sequence (εr)r∈N+ provided by
[24] respects Theorem 1:

εr = θr

√
2 log(3/dr)

r
+

3M log(3/dr)

r
, (5)

where dr = c/rp, c = δ(p− 1)/p, p is some real number, and

θ
2

r =
1

r

r∑
i=1

(
Xi − ErX

)2
. (6)

Minh et al. [25] have set dr as 1
r(r+1) , which does not

include additional parameters. To extract the core parameters
to be configured, by dr = 1

r(r+1) , we simplify (5) to:

εr ← αθr

√
log r

r
+ β

log r

r
, (7)

where r is current resampling number, α and β are two
parameters to be optimized with α, β > 1. Using (7) and
Example 1, we propose a new adaptive stopping rule using
Empirical Bernstein Bound as detailed in Algorithm 2.

IV. AUTOMATIC DESIGN OF RESAMPLING RULES

Section IV-A summarizes the studied resampling rules.
Section IV-B presents our meta-optimizer for optimizing re-
sampling rules’ parameters. Section IV-C describes the test
cases. In Section IV-D we present and discuss the experimental
results.

A. Resampling rules

We apply 3 adaptive and non-adaptive resampling rules,
combinations of these 3 rules and their variants with stopping
rule by Empirical Bernstein Bound, EBStop, presented in the
previous section. Instead of doing one resampling at a time
(line 6-8 in Algorithm 2), we use, in our experiments, an
exponentially increasing number of resampling per block to
accelerate the implementation as detailed in Application 1.



Algorithm 2 EBStop, stopping rule by Empirical Bernstein
Bound. f(x)(1), . . . , f(x)(r) denote the evaluations of x (x′

respectively).
Require: ε: precision
Require: x, x′ ∈ Rd: two points to be compared

1: LB ←∞
2: UB ← −∞
3: r ← 0 . Number of resampling
4: while (1 + ε)LB < (1− ε)UB do
5: X(r+1) ← f(x)(i) − f(x′)(i) . Resample the points
6: r ← r + 1 . Update the number of resampling
7: Compute ErX . Update the empirical mean
8: εr ← αθr

√
log r
r + β log r

r

9: LB ← max{LB,ErX − εr}
10: UB ← min{UB,ErX + εr}
11: end while

We summarize in Table I these 6 resampling rules used in the
experiments and their notations.

Application 1. The resampling of parent and offspring (lines
7-10) in Algorithm 1 is replaced by the following lines.

1: r ← 0 . Resampling counter
2: b← 0 . Resampling block index
3: y, y′ ← 0
4: while (1 + ε)LB < (1− ε)UB and r < rn do
5: rb ← min(10× 2b, rn − r) . Compute the block size
6: for i ∈ {1, · · · , rb} do. Resample the points rb times
7: X(r+i) ← f(x)(r+i) − f(x′)(r+i)
8: end for
9: r ← r + rb

10: y′ ← Erf(x′) . Update the empirical mean
11: y ← Erf(x) . Update the empirical mean
12: Compute ErX . Update the empirical mean
13: Compute θr using (6)
14: εr ← αθr

√
log r
r + β log r

r

15: LB ← max{LB,ErX − εr}
16: UB ← min{UB,ErX + εr}
17: b← b+ 1 . Update block index
18: end while

TABLE I
ADAPTIVE AND NON-ADAPTIVE RESAMPLING RULES. τEBB REFERS TO
THE ADAPTIVE STOPPING RULE BY EMPIRICAL BERNSTEIN BOUND, AS

PRESENTED IN APPLICATION 1.

Rules Formula Parameter Notation
Non-adaptive (2) ζ, κ, % rNA
Non-adaptive (2) and (7) ζ, κ, %, α, β rNA,τEBBwith τEBB

Adaptive (3) ζ, κ, η rσ
Adaptive (3) and (7) ζ, κ, η, α, β rσ,τEBBwith τEBB
Adaptive (4) ζ, κ, η, % rNA,σ
Adaptive (4) and (7) ζ, κ, η, %, α, β rNA,σ,τEBBwith τEBB

B. Meta-optimizer

We have two levels of optimization. The upper level is the
design and tuning of a resampling rule. The lower level is a run
of an evolution strategy, using the resampling rule provided
by the upper level. We refer to the upper level as meta-
optimization. The meta-optimization uses the convergence
slope of the lower level as the objective value. We include
a meta-optimizer which uses a (1 + 1)-ES to tune parameters
of resampling rules defined in Table I. Our parameters are the
ones deciding the number of resampling, i.e. ζ, κ, η, % in (2),
(3), (4) and α, β in (7). The search space of the parameters
is as follows: ζ, κ and η range in (0,∞), α and β range in
(1,∞), while % takes real values between 0 and 1.

The approximate slope at iteration n [1] is defined as

s =
logEf(xn)

logm
. (8)

Again, xn is the approximation of the optimum indexed by
iteration number n and m is the total number of evaluations
over iterations 1, 2, . . . , n. We will consider the first n such
that a given number m of function evaluations is reached. Ac-
tually, we will interrupt the corresponding iteration. Therefore,
x̃m = xn, x̃m is the approximate optimum provided by the
algorithm after m evaluations.

We define our objective function g as follows: si is the
approximate slope in dimension 2i (i ∈ {1 . . . 6}), g1 =
1
6

∑6
i=1 si is the average slope, g2 = maxi∈{1...6} si is the

slope of the worst case, and the objective function is

g =
1

2
(g1 + g2). (9)

The objective function g is a mapping from some function f
to real number, i.e. g : F 7→ R. For any f ∈ F , g(f) denotes
the mean of, g2, the worst approximate slope, and g1, the
averaged approximate slope in dimension 2i,∀i ∈ {1, . . . , 6}.
The weights of g1 and g2 (set as 1

2 ) are arbitrarily chosen.
Note that the meta-optimizer itself and the problem it aims

to optimize are also noisy, we apply (1 + 1)-ES described
in Algorithm 1 with resampling number 1.01n at the nth

iteration. This simple exponential rule, denoted as O101, with
a very small coefficient has lead to overall good performance
on a set of benchmark functions in the strongly noisy case [7].

C. Testbed

We consider sphere functions with unbiased additive noise
of different strengths and seven test cases, detailed in Table
II. As the optimum of noisy sphere functions f1, f2 and f3
are located in x∗ = 0d. These three functions model the noise
of different strength levels or of same level but starting from
different initial points (near to far from the optimum). We
get Ef1(x∗) = Ef2(x∗) = Ef3(x∗) = 0. By definition, the
approximate slope defined in (8) is then the slope of SR.

For each test case, an iteration of meta-optimization is a
tuning iteration of parameters. We first tune the parameters of
all the resampling rules for each case (termed as optimization
phase), then apply the optimized parameters, which provide
better slopes, to all the 7 cases (termed as test phase).



TABLE II
TEST CASES AND RELATED OBJECTIVE FUNCTIONS. f1 , f2 AND f3 ARE 3
NOISY SPHERE FUNCTIONS. N DENOTES SOME INDEPENDENT STANDARD

GAUSSIAN RANDOM VARIABLE.

Test case number Objective function
T1 g(f1) with f1 = ||x||2 + 1e−6N
T2 g(f2) with f2 = ||x||2 + 0.05N
T3 g(f3) with f3 = ||x||2 +N
T4 1

2
(g(f1) + g(f2))

T5 1
2
(g(f1) + g(f3))

T6 1
2
(g(f2) + g(f3))

T7 1
3
(g(f1) + g(f2) + g(f3))

D. Results and discussion

Experiments were performed with 600 iterations at the meta
level and 5e5 evaluations at the lower level (i.e., one evaluation
of a given vector of parameter values). The initial point is
||x0|| = 1 and the initial step-size is σ0 = 1. The approximate
slopes are presented in Table III.

We observe that: (i) The non-adaptive resampling rule rNA
and the adaptive rule rNA,σ , performed well on all dimensions.
(ii) However, the adaptive rule rσ does not lead to convergence
in the case with a high noise strength. (iii) Parameters opti-
mized for the test case 1, corrupted by an additive very small
constant variance noise, provide a slightly worse performance
for cases with a big constant variance noise. (iv) Parameters
optimized for the test case 3, corrupted by an additive big
constant variance noise, do not provide good performance for
cases with a small constant variance noise. Actually, for cases
corrupted by a small constant variance noise do not need too
many resamplings to cancel the effect of the noise.

V. OUR APPROXIMATE RESAMPLING RULE

A. Approximation of resampling rules

We summarize the overall best resampling rules, rT1NA
and rT4NA, obtained by optimizing on test case T1 and T4,
respectively, but perform overall well on all test cases. These
two rules are marked by “*” at the end of line in Table III,
also shown as rT1NA ≈ d1.0751

n
d1.0440 · max{1, n

0.6362

d0.6642 }e and
rT4NA ≈ d1.0860

n
d0.9990 ·max{1, n

0.3920

d0.3916 }e. We observe that the
first term of rT1NA increases slower than the first term of rT4NA,
while its second term increases faster than the one of rT4NA.
From rT1NA and rT4NA, we propose the following approximate
non-adaptive formula

r̃∗ = d1.1nd ·max{1,
√
n

d
}e. (10)

We applied the approximate non-adaptive formula (10) to
the first 3 test cases with weak, medium and strong noise
strength using different budgets, in terms of the number of
function evaluations. The initial point is ||x0|| = 1 and the
initial step-size is σ0 = 1 as in the previously presented tuning
phase. Table IV presents the averaged approximate slopes.

It can be seen that the approximate non-adaptive formula
achieves slightly worse slopes to approximate slopes obtained
by formulas with optimized parameters (presented in Table
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Fig. 1. The logarithm of the distance to the optimum converges linearly
in the logarithm of the number of evaluations. Figures obtained using the
approximate resampling rule r̃∗ (left) and the simplified rule r̃ (right).

III). When using bigger budget, i.e. more function evaluations,
we get much better slopes in high dimensions in the test case 3
(with bigger noise). The approximate non-adaptive formula is
never so bad in all the three cases with different noise strength,
i.e. it is more robust than other methods.

B. The factor 1.1
n
d is important

We exam the effect of factor 1.1
n
d in the approximate rule

by comparing it to an even simpler rule, formalized as:

r̃ = d
√
n

d
e. (11)

The log-log convergence of both resampling rules on optimiz-
ing functions corrupted by additive noise of different strengths
is illustrated in Fig. 1. It is clearly shown that the same
algorithm using r̃, defined in (11), converges much slower
than the one using r̃∗, defined (10), on different dimensions.

C. Comparison with state-of-the-art derivative-free optimiza-
tion algorithms

The Python3 library nevergrad [8] is an open source soft-
ware for derivative-free optimization, which includes a set
of benchmark functions, various derivative-free optimization
algorithms and some noise models [8]. We compare (Fig. 2)
our approximate resampling rule (10) to the implementations
of two state-of-the-art algorithms, simultaneous perturbation



TABLE III
OPTIMIZED PARAMETERS (COLUMNS 3-8) AND APPROXIMATE SLOPES (COLUMN 9, AS IN (9): THE LOWER, THE FASTER) IN DIFFERENT TEST CASES
WITH OPTIMIZED PARAMETERS USING 600 ITERATIONS DURING META-OPTIMIZATION (UPPER LEVEL) AND 5e5 EVALUATIONS DURING THE TUNING

(LOWER LEVEL). IN THIS TABLE, THE TERM “SLOPE” REFERS TO THE EVALUATION OF OBJECTIVE FUNCTIONS DEFINED IN TABLE II. THE “OPTIMIZED
SLOPE” (COLUMN 9) REFERS TO THE APPROXIMATE SLOPES OBTAINED AFTER EACH META-OPTIMIZATION PHASE. THE BEST APPROXIMATE SLOPE IN

EACH TEST CASE IS PRESENTED IN BOLDFACE. AFTER THE OPTIMIZATION PHASE, WE APPLY THE DETERMINED RESAMPLING RULES USING THE
OPTIMIZED PARAMETERS (COLUMNS 3-8) TO THE 7 TEST CASES (NO MORE TUNING) AND COLUMNS 10-16 PRESENT THE OBTAINED AVERAGED SLOPES

OVER 11 TRIALS. GRAY COLUMNS ARE SLOPES OBTAINED BY APPLYING THE PARAMETERS OPTIMIZED ON TEST CASE i TO THEMSELVES,
∀i ∈ {1, . . . , 7}. A SLOPE OF 0.0000 MEANS THAT THE OPTIMIZATION TRIAL FAILS, THUS, DIVERGENCES.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Optimization phase Test phase

Optimized parameters Optimized Slopes obtained in different test cases
Test Resampling Non-adaptive step-size Weight Bernstein slope with parameters obtained after optimization phase
case rule part part module (columns 3-8)

ζ κ η % α β T1 T2 T3 T4 T5 T6 T7

T1

rNA 1.1717 1.0440 - 0.4570 - - -1.1442 -1.1342 -0.3192 -0.1071 -0.7250 -0.6178 -0.2050 -0.5141 *
rσ 0.8443 2.3609 0.6751 - - - -1.1370 -1.1390 -0.2306 -0.0500 -0.6801 -0.5930 -0.1433 -0.4747

rNA,σ 0.6473 3.6374 1.1945 0.2813 - - -1.1356 -1.1424 -0.1720 -0.0316 -0.6557 -0.5865 -0.1028 -0.4476
rNA,τEBB 1.5291 1.1840 - 0.0835 6.9498 6.1939 -1.1096 -0.8451 -0.2850 -0.0820 -0.5797 -0.4624 -0.1829 -0.4079
rσ,τEBB 0.7205 0.3754 0.0170 - 11.6889 8.0762 -1.0561 -1.0725 -0.2374 -0.0555 -0.6526 -0.5586 -0.1495 -0.4497

rNA,σ,τEBB 1.1218 1.0168 0.2304 0.7791 1.4680 2.5756 -1.1186 -0.9607 -0.2615 -0.0666 -0.6096 -0.5125 -0.1647 -0.4297

T2

rNA 1.6595 0.9898 - 0.2338 - - -0.3099 -0.6180 -0.3350 -0.1070 -0.4679 -0.3628 -0.2232 -0.3499
rσ Inf 0.0000 0.0000 - - - 0.0000 - - - - - - -

rNA,σ 1.1809 0.9443 1.8227 0.7220 - - -0.3392 -0.5435 -0.3328 -0.1135 -0.4503 -0.3353 -0.2213 -0.3308
rNA,τEBB 1.2662 1.0015 - 0.9240 1.7021 1.1816 -0.3110 -0.5844 -0.2943 -0.0728 -0.4426 -0.3372 -0.1875 -0.3253
rσ,τEBB 2.2133 1.3473 0.6613 - 1.4860 1.2819 -0.3151 -0.4471 -0.3064 -0.0935 -0.3818 -0.2763 -0.2086 -0.2921

rNA,σ,τEBB 1.8551 1.0107 0.0957 0.1316 2.8414 1.1930 -0.3231 -0.7184 -0.3017 -0.0830 -0.5179 -0.4021 -0.1917 -0.3665

T3

rNA 1.4061 1.0195 - 0.7813 - - -0.1118 -0.6037 -0.3326 -0.1080 -0.4730 -0.3580 -0.2151 -0.3458
rσ 2.9144 1.3364 0.3463 - - - -0.0875 -0.4625 -0.3209 -0.1086 -0.3993 -0.2834 -0.2089 -0.3003

rNA,σ 0.0694 15.4412 6.4953 0.3066 - - -0.1170 -0.2049 -0.1922 -0.1133 -0.2005 -0.1609 -0.1592 -0.1718
rNA,τEBB 2.1528 0.8545 - 0.0500 22.2492 4.9408 -0.1016 -0.2669 -0.2324 -0.0926 -0.2513 -0.1843 -0.1692 -0.2009
rσ,τEBB 2.2373 1.3269 1.0109 - 1.0125 1.1082 -0.0905 -0.3211 -0.2725 -0.0945 -0.2953 -0.2019 -0.1806 -0.2265

rNA,σ,τEBB 1.2713 1.0338 16.8935 0.9008 1.4168 6.9599 -0.0937 -0.0192 -0.0202 -0.0133 -0.0181 -0.0180 -0.0153 -0.0136

T4

rNA 1.1323 0.9990 - 0.6638 - - -0.7309 -1.1426 -0.3226 -0.0941 -0.7378 -0.6206 -0.2082 -0.5189 *
rσ 1.6566 1.4716 0.2148 - - - -0.7225 -1.1269 -0.2879 -0.0815 -0.7115 -0.6085 -0.1876 -0.5017

rNA,σ 1.2354 1.5549 0.4672 0.2325 - - -0.6927 -1.1293 -0.2804 -0.0816 -0.7032 -0.6124 -0.1804 -0.4985
rNA,τEBB 1.3750 1.0980 - 0.1472 2.5663 1.0607 -0.6869 -1.0650 -0.2702 -0.0744 -0.6630 -0.5649 -0.1691 -0.4641
rσ,τEBB 1.8114 1.5004 0.2068 - 1.6737 4.2571 -0.6911 -1.1075 -0.2663 -0.0773 -0.6856 -0.5924 -0.1742 -0.4830

rNA,σ,τEBB 1.1005 1.4947 14.0566 0.7220 7.0467 3.4607 -0.6483 -0.0390 -0.0316 -0.0226 -0.0263 -0.0308 -0.0202 -0.0226

T5

rNA 1.1978 1.0754 - 0.4097 - - -0.6162 -1.1402 -0.3113 -0.0942 -0.7246 -0.6127 -0.2019 -0.5145
rσ Inf 0.0000 0.0000 - - - 0.0000 - - - - - - -

rNA,σ 0.5736 4.2415 1.2609 0.2614 - - -0.5842 -1.1420 -0.1563 -0.0351 -0.6458 -0.5811 -0.0921 -0.4411
rNA,τEBB 1.1757 1.0350 - 0.4860 10.2056 9.2748 -0.6008 -0.4637 -0.3018 -0.0748 -0.3881 -0.2699 -0.1881 -0.2794
rσ,τEBB 0.5563 0.4438 0.1798 - 2.9083 1.0856 -0.5565 -1.0676 -0.2206 -0.0398 -0.6489 -0.5533 -0.1368 -0.4411

rNA,σ,τEBB 1.1353 1.5172 1.0748 0.6066 2.7049 1.1533 -0.5963 -0.4673 -0.3028 -0.0780 -0.3885 -0.2678 -0.1882 -0.2829

T6

rNA 1.2037 0.9199 - 0.9581 - - -0.2169 -0.7601 -0.3271 -0.1037 -0.5479 -0.4340 -0.2171 -0.3974
rσ 2.5262 1.3205 0.4072 - - - -0.2193 -0.5023 -0.3290 -0.1110 -0.4147 -0.2985 -0.2186 -0.3125

rNA,σ 1.6885 0.9915 0.0276 0.1966 - - -0.2412 -0.6234 -0.3284 -0.1097 -0.4738 -0.3523 -0.2154 -0.3507
rNA,τEBB 1.3726 0.9149 - 0.4619 14.7646 1.1179 -0.2014 -0.2343 -0.2215 -0.0933 -0.2272 -0.1602 -0.1542 -0.1809
rσ,τEBB Inf 0.0000 0.0000 - 1.0000 Inf 0.0000 - - - - - - -

rNA,σ,τEBB 2.4229 1.2582 0.4247 0.0260 25.3590 7.4425 -0.1952 -0.4610 -0.3160 -0.0885 -0.3870 -0.2751 -0.2044 -0.2915

T7

rNA 1.7980 1.2524 - 0.0355 - - -0.5166 -1.1185 -0.3076 -0.0914 -0.7127 -0.6076 -0.2076 -0.5036
rσ 2.0474 1.3376 0.0124 - - - -0.5098 -1.1270 -0.2950 -0.0893 -0.7129 -0.6073 -0.1923 -0.5033

rNA,σ 1.1084 1.1161 2.5190 0.8482 - - -0.5126 -1.1286 -0.3087 -0.0975 -0.7221 -0.6137 -0.2069 -0.5119
rNA,τEBB 1.8575 1.2620 - 0.0269 - - -0.4848 -0.0148 -0.0079 -0.0100 -0.0125 -0.0105 -0.0079 -0.0117
rσ,τEBB 1.8479 1.4783 0.1886 - 1.0766 26.3923 -0.4763 -1.1055 -0.2744 -0.0782 -0.6885 -0.5937 -0.1713 -0.4878

rNA,σ,τEBB 1.1857 1.2070 0.3758 0.4669 1.0890 1.4013 -0.4863 -0.9006 -0.2689 -0.0632 -0.5808 -0.4789 -0.1662 -0.4140

stochastic approximation (SPSA) and TBPSA1, a simplified
version of the population size controlled, comparison-based,
self-adaptive ES (termed pcCMSA-ES) [26] which reached
slope(SR) = −1 on the same noisy function studied by [19]
- with an algorithm not satisfying the simplicity assumption.
The symmetric noise model is fnoisy(x) = f(x)+S×(f(x+
Nd) − f(x)) × N1, and the asymmetric one is fdisym(x) =
f(x) + S × (1 + f(x))× χx0>0 × (f(x+Nd)− f(x))×N1,
whereNd is a standard Gaussian random variable in dimension
d and we test noise levels S ∈ {1, 10, 100}. Thus, both a prior
and posterior noise sources are considered. Other resampling

1More details of the algorithms and their implementations can be found at
https://github.com/facebookresearch/nevergrad.

formulas used in the comparison are ablations of our formula.
The difference between (10) and other formulas (detailed in

the caption of Fig. 2) are moderate, the key message from Fig.
2 is more the comparison with the population control method
TBPSA and SPSA and the fact that overall we outperform the
O101 rule from [7].

VI. CONCLUSION

In this work, we consider resampling rules used in evo-
lutionary algorithms for solving noisy optimization problems.
We combine some non-adaptive and adaptive resampling rules
for noisy evolutionary optimization. In terms of adaptive rules,
a stopping rule by Empirical Bernstein Bound is also tested.



Standard noise model
Noise strength 1 Noise strength 10 Noise strength 100 .

Dim2

Dim 10

Dim 50 Asymmetric noise model
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Fig. 2. Comparison of our proposed rule (10) (labelled as ovaropt2), ablations of our rule (labelled as ovara= d
√
ne, ovarb= n, ovarc= d

√√
ne,

ovard= d
√
n · de and (11): ovaropt= d

√
n
d
e), the O101= dn1.01e rule in [7] and other algorithms (labelled as NaiveTBPSA, TBPSA and SPSA) in

nevergrad. We see that population control perform better than resampling rules (including ours) in some cases, but its performance degrades with high noise
(rightmost column) or misleading noise model (bottom block).



TABLE IV
AVERAGED APPROXIMATE SLOPES (THE LOWER, THE BETTER) IN

DIFFERENT TEST CASES WITH THE APPROXIMATE RESAMPLING RULE (10).
THE LAST 3 COLUMNS ILLUSTRATE THE APPROXIMATE SLOPES, DEFINED

IN (8), OBTAINED AFTER CERTAIN NUMBERS OF EVALUATIONS FOR THE
NOISY FUNCTIONS f1 , f2 AND f3 OF VARIOUS DIMENSIONS, WITH THEIR

NOISE STRENGTH INDICATED IN THE FIRST COLUMN, RESPECTIVELY.

Noise d
Approximate slope

After T = 5e5 After T = 1e7 After T = 1e9

1e−6

2 -1.4538 ± 0.0662 -1.3354 ± 0.1391 -1.1406 ± 0.0634
4 -1.3570 ± 0.0724 -1.2136 ± 0.0402 -1.0619 ± 0.0352
8 -1.2895 ± 0.0356 -1.1581 ± 0.0414 -1.0072 ± 0.0294

16 -1.1906 ± 0.0291 -1.0792 ± 0.0237 -0.9483 ± 0.0195
32 -1.1034 ± 0.0426 -1.0215 ± 0.0181 -0.8955 ± 0.0106
64 -0.9973 ± 0.0213 -0.9474 ± 0.0087 -0.8499 ± 0.0067

0.05

2 -0.6434 ± 0.0911 -0.6164 ± 0.0623 -0.6206 ± 0.0919
4 -0.5677 ± 0.0551 -0.5269 ± 0.0431 -0.5433 ± 0.0457
8 -0.4641 ± 0.0461 -0.4750 ± 0.0267 -0.4817 ± 0.0278

16 -0.3769 ± 0.0301 -0.4170 ± 0.0177 -0.4329 ± 0.0206
32 -0.3006 ± 0.0110 -0.3419 ± 0.0177 -0.3748 ± 0.0106
64 -0.2251 ± 0.0140 -0.2750 ± 0.0093 -0.3299 ± 0.0104

1

2 -0.4142 ± 0.0668 -0.4558 ± 0.0865 -0.4443 ± 0.0510
4 -0.3220 ± 0.0655 -0.3569 ± 0.0390 -0.3936 ± 0.0256
8 -0.2531 ± 0.0365 -0.2956 ± 0.0359 -0.3417 ± 0.0225

16 -0.1492 ± 0.0236 -0.2217 ± 0.0296 -0.2950 ± 0.0206
32 -0.0942 ± 0.0183 -0.1596 ± 0.0152 -0.2353 ± 0.0120
64 -0.0048 ± 0.0157 -0.0919 ± 0.0083 -0.1828 ± 0.0057

The design and tuning of resampling formulas is realised by
automatic parameter tuning of the parameters in the combined
formula and the stopping rule, equipped with a rounding of
obtained coefficients. When tuning the rules, their convergence
rates on strongly noisy optimization problems, in which the
variance of the noise does not vanish in the neighborhood of
the optimum, are used as the performance indicator.

We proposed a parameter-free, simple but effective resam-
pling rule r̃∗ = d1.1nd · max{1,

√
n
d }e at iteration n (d is

the problem dimension). Our new resampling rule performs
well compared to various ablations, but the difference is minor
(Fig. 2). We note the importance of the exponential term 1.1

n
d

(Section V-B - this is consistent with [7]); the lack of benefit
associated to the Bernstein stopping rule (Section III-E); and
the lack of dependencies in the step-size (Section III-D). We
also note that the population control method of nevergrad
outperforms our resampling rules for simple noise models with
moderate strength, but our algorithm tends to outperform it in
the following three cases: when the noise is strong; when the
noise model is complicated; or when the dimension is low.
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