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Abstract—The capacitated arc routing problem is an important
NP-hard problem with numerous real-world applications. The
capacitated arc routing problem with uncertainties refers to those
instances where there are uncertainties in decision variables, ob-
jective functions and/or constraints. The capacitated arc routing
problem with uncertainties captures real-world situations much
better than a static capacitated arc routing problem because few
real-world problems are static and certain. Uncertainties in the
capacitated arc routing problem pose new research challenges.
Algorithms that work well for a static and certain capacitated
arc routing problem may not work on the version with uncer-
tainties. There have been increasing progresses in studying the
capacitated arc routing problem with uncertainties during the
past two decades. However, the papers on the capacitated arc
routing problem with uncertainties have been scattered around
in different journals and conferences in artificial intelligence,
computer science, and operational research. Different definitions
and formulations of capacitated arc routing problem with un-
certainties are used by different papers, making comparisons
difficult. In order to better understand the state-of-the-art in
solving the capacitated arc routing problem with uncertainties,
this paper presents a comprehensive review of the problem and
its key research issues. Not only has the paper summarised the
progresses so far, key research issues are identified, including
scalability of the algorithms, performance measures, common
benchmarks, etc. Future research directions are also identified
at the end of this review.

Index Terms—Uncertain capacitated arc routing problem,
stochastic capacitated arc routing problem, meta-heuristics, ro-
bust optimisation, evolutionary algorithms.

I. INTRODUCTION

THE capacitated arc routing problem (CARP) [1], [2] is
a NP-hard combinatorial problem with numerous real-

world applications. Examples include the urban waste collec-
tion, snow removal and street salting problems [3], [4]. The
objective of the CARP is to efficiently allocate a number of
vehicles with limited capacities and select the optimal set of
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routes from a depot to serve a number of tasks while the
total demand of tasks served on any route does not exceed the
vehicle capacity. Different from the vehicle routing problem
(VRP) [5], the tasks in CARP are located on the edges instead
of vertices. However, a good understanding of CARP would
benefit the study of VRP.

Motivated by the characteristics of different real-world
applications, numerous variants of CARPs have been pro-
posed, which differ in terms of vehicle capacity, demand,
and service time windows [2], [4], among which most of the
work assume that no uncertainty is involved in the CARP
instances. However, uncertainty is everywhere in real life
and makes the solutions optimised on deterministic CARP
instances non-optimal or even infeasible under the uncertain
environment. For instance, in the snow removal and street
salting problems [3], the amount of snow to be removed from
a street and the amount of salt to be put on a street depend
on the weather and are non-deterministic. In the urban waste
collection problem [4], the amount of waste to be collected on
a street depends on the daily consumption of food or goods,
which is uncertain.

Stochastic CARP (abbreviated to “SCARP”), first proposed
by Fleury et al. [6] in 2002, assumes the stochasticity of
demands in the urban waste collection problem while all
the other variables remain deterministic. Such problems have
also been referred to as the CARP with stochastic demands
(CARPSD) in some papers [7], [8]. Besides stochastic de-
mands, stochastic costs are commonly observed in real life as
well. In addition, an edge could be broken, thus not be present,
due to heavy traffic or road maintenance. Uncertain CARP is
then defined by [9], considering all the uncertainties mentioned
above. Uncertain CARP [9] is abbreviated to “uCARP” in this
paper to distinguish it from the general CARP with uncertain-
ties (UCARP), which include all the possible uncertainties in
decision variables, objectives functions and/or constraints.

There have been many variants of the UCARP in the past
two decades. Most papers on the UCARP focus on the robust
evaluation of solutions optimised on a set of deterministic
scenarios of the UCARP (Section V-B1). Only a few of them
design algorithms for tackling the UCARP directly (Section
V-B2). However, all such work assumes the knowledge of vari-
able distributions (Section III-C). In real-world applications,
such knowledge is often unavailable; instead, only a finite set
of deterministic realisations of a UCARP is accessible [10].
As a result, scenario-based robust optimisation in the UCARP
without assuming known distributions of variables has been
investigated (Section V-C). Very recently, machine learning
techniques were applied to design routing heuristics for the
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UCARP (Section V-D).
In spite of much work on the deterministic CARP, the

UCARP has introduced new research challenges that require
further study. Many variants of the UCARP have been pro-
posed in the literature, motivated by different real-world appli-
cations. It is unclear whether these variants are fundamentally
different or whether they pose different research questions.
Papers on the UCARP have been published in a diverse set
of journals and conferences. To our best knowledge, there has
been no comprehensive review on different variants of UCARP
and the state-of-the-art solutions to them. It is unclear what
the key research challenges are for different UCARP variants
and what future directions might be.

S. Wøhlk [2] reviewed the research on the CARP and its
variations published till 2007, when the studies on stochastic
CARP were very limited [6], [11], [12], [13]. Fadzli et al. [4]
surveyed the applications of CARP and its extensions to waste
collection problem published till 2011. There is no dedicated
review of UCARP. The main objectives of this paper include
reviewing different problem definitions and assumptions of
the UCARP, the performance measures and approaches used
for solving the problem instances, discussing the key research
challenges, and pointing out possible future research direc-
tions.

The remainder of this paper is organised as follows. Section
II clarifies the scope of this review and the methodology used.
Section III formalises the deterministic CARP and reviews
different variants of CARP with uncertainties. Section IV
introduces the reliability and robustness metrics used for
evaluating solutions. We present the techniques for handling
uncertainties, solving CARP with uncertainties and designing
routing policies in Section V. Section VI discusses in depth
the most important research issues related to the CARP with
uncertainties. Finally, Section VII concludes the paper and
points out some future research directions.

II. SCOPE OF THE REVIEW

To review the related work published till January 2020,
search has been conducted in the databases of the following
main publishers, IEEE Xplore, ACM, Springer and Elsevier,
using the search term: (“capacitated arc routing problem”)
AND (“stochastic” OR “uncertain” OR “random”). We then
searched again with Google Scholar and Web of Science using
the same search terms listed above.

Among the returned results, the papers are carefully
screened as follows. (i) If a paper does not work on CARPs
(this happens as the search term may appear in references or
in the text body due to a citation to another work), then it’s not
included in this survey. (ii) If a paper considers deterministic
CARPs, then no uncertainty has been involved in the problem
variables (presence of task, presence of edge, demand of task,
cost of traversing edges, service cost, vehicle capacity, etc.),
and it is therefore not included in this survey. It is notable that
if the above keywords do not appear explicitly in the title or
body of a publication, then the publication is not included in
this survey. The study on the dynamic and deterministic CARP
(e.g., the CARP with period- or time-dependent demands or

costs) where the exact value of demand is computable and
no uncertainty is involved, is not included in this review.
More discussions on the comparison of dynamic and stochastic
CARP will be provided in Section III-A2. The second column
of Table V lists the articles on CARP with uncertainties that
have been reviewed in this paper.

III. CAPACITATED ARC ROUTING PROBLEM WITH
UNCERTAINTIES

In order to facilitate the description and understanding of the
problems, we formalise the static and deterministic version of
capacitated arc routing problems (CARPs) in Section III-A1.
A taxonomy of CARPs, similar to [14], is provided in Section
III-A2 to distinguish between dynamics and randomness in
the CARP. Then, Section III-B briefly reviews CARPs with
uncertainties. The modelling of uncertainties is described
in Section III-C. Section III-D presents the benchmarks of
problem instances used in the reviewed literature.

A. Capacitated arc routing problem

The basic form of CARP [5], [1] can be described as
follows. Let G = (V,E) be an undirected graph where V
and E denote the sets of vertices and edges, respectively. The
vertex v0 ∈ V is the depot. Each edge e ∈ E has a cost
c(e) > 0. If there is a task on this edge, a positive demand
is associated to e. The task set T is the set of edges with
positive demands. A fleet of vehicles with a given capacity
Q > 0 are allocated to serve all the tasks in T , starting and
terminating at the identical depot v0. The objective of CARP
is to efficiently allocate these vehicles and select the optimal
set of routes to serve tasks while the total demand of tasks
served on any route does not exceed Q.

1) General formulation of CARP: Diverse extensions of
CARP to the above have been proposed depending on the
corresponding applications in the real-world, such as the
CARP with stochastic time and periodic CARP [2], the CARP
with multiple depot [15] and the CARP with multiple vehicle
capacities [16]. Their different formulations are outside the
scope of this review as we focus on the CARP with uncer-
tainties.

A solution of CARP can be represented by a set of
routes xxx = {r1, · · · , rm} served by m vehicles. Each route
rk = (tk,1, · · · , tk,lk) (k ∈ {1, · · · ,m}) is a sequence of tasks
served, where lk is the number of tasks served on this route
and tk,i refers to the ith task on the kth route. We define the
general formulation used in [17] as follows, given G = (V,E),
T , Q, cost c(tk,i) and demand d(tk,i) of tk,i,

minC(xxx) =

m∑
k=1

(

lk∑
i=1

(
c(tk,i)︸ ︷︷ ︸

serving cost

+ dist(tail(tk,i−1), head(tk,i))︸ ︷︷ ︸
deadheading cost

)
+ dist(tail(tk,lk), v0)︸ ︷︷ ︸

deadheading cost from last task to depot

), (1)
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s.t. tk,i ∈ T, ∀k ∈ {1, · · · ,m}, i ∈ {1, · · · , lk}, (2)
head(tk,1) = tail(tk,lk) = v0,∀k ∈ {1, · · · ,m},(3)
tk,i 6= tk′,i′ , ∀(k, i) 6= (k′, i′), (4)
tk,i 6= inv(tk′,i′), ∀(k, i) 6= (k′, i′), (5)
m∑
k=1

lk = |T |, (6)

lk∑
i=1

d(tk,i) ≤ Q, ∀k ∈ {1, · · · ,m}, (7)

where head(tk,i) and tail(tk,i) denote the two endpoints of
the task tk,i. When i = 1, tail(tk,0) is defined as the depot
v0. inv(tk,i) denotes the reverse direction of tk,i. Besides
the serving cost c(t) of each task t, the deadheading cost,
defined as the cost of traversing the shortest path between a
pair of tasks, is often considered as well. dist(vi, vj) denotes
the shortest distance from vertex vi to vertex vj . Eq. (1)
indicates the minimisation of C(xxx), the sum of the serving
and deadheading costs of the set of routes xxx. The domain of
variables is defined in Eq. (2). Eq. (3) indicates that each route
should start and end at the depot.1 Eqs. (4) and (5) ensure that
each task will be served in one direction only, i.e., (k = k′)
and (i = i′) won’t hold simultaneously. Together with Eq. (6),
Eqs. (4) and (5) further ensure that each task will be served
exactly once. The constraint of vehicle capacity is implied in
Eq. (7).

2) Taxonomy of CARP: Similar to the taxonomy of
VRP [14], we propose a taxonomy of CARPs as follows:
(1) static and deterministic CARP;
(2) dynamic and deterministic CARP;
(3) static and stochastic CARP;
(4) dynamic and stochastic CARP.

A CARP instance can be dynamic, i.e., the variables are
unknown a priori and may change over time; otherwise, it is
static. A deterministic CARP assumes no random element in-
volved in the problem, thus the variables are all deterministic.
Only static input (e.g., edges, tasks and demands) is considered
in the static and deterministic CARP, while in the dynamic and
deterministic version, the input changes over time, such as an
increasing travelling cost because of the increasing vehicle
load. The stochastic CARP or CARP with uncertainties, in
general, considers that the input variables are random and their
exact values are only known at the time of execution. The
use of terms dynamic and stochastic is sometimes ambiguous.
Table I lists some of the main differences between the static
and stochastic CARP and the dynamic and stochastic version.

In this paper, we focus on the CARP with uncertainties,
either static or dynamic. Studies on dynamic and deterministic
CARP are out of the scope of this paper. From the literature,
we have observed that all review studies so far aimed at
solving static and stochastic CARP, most of which were based
on methods for solving static and deterministic CARP. Few
treated a stochastic CARP as a stochastic problem. To focus
on uncertainties in the CARP, from now on, the term “static”

1This is the formulation in [17]. However, the head endpoint of the first
served task (i.e., head(tk,1)) may not be the depot as a vehicle may need to
traverse some non-task edge before arriving at tk,1.

will be omitted when referring to static and deterministic or
static and stochastic CARP.

B. Variants of CARP with uncertainties
In the past two decades, different variations of CARP with

uncertainties were proposed and studied considering the non-
deterministic factors in real-world problems.

1) CARP with stochastic demands (CARPSD): Motivated
by the urban waste collection problem, Fleury et al. [6], [11]
proposed the stochastic CARP (abbreviated as “SCARP”) in
which only the demands are stochastic, i.e., d(·) in Eq.(7) is
a random variable rather than a constant, and follows normal
distributions. Christiansen et al. [7] and Laporte et al. [8] used
the abbreviation “CARPSD” for the CARP with stochastic
demands (same as SCARP) but assumed Poisson distributed
demands in their work.

2) Uncertain CARP (uCARP): Besides stochastic demands,
many other stochastic variables can be present in real-world
applications, such as the stochastic costs of tasks, the absence
of edges and/or tasks [3], [4]. Factors that can affect the cost
of traversing a path include, but are not limited to, the speed
of a vehicle, the load of a vehicle, the traffic flow and the
weather. Due to heavy traffic or road maintenance, an edge
can be considered broken, thus it is not present. The above can
be roughly summarised into the following 4 random factors:
presence of tasks, demand of tasks, presence of paths and
deadheading costs. Mei et al. [9] proposed a more general
case, uncertain CARP (uCARP), that considers all the above.
In [9], Bernoulli and Gamma distributions were assumed for
the stochastic variables.

However, in real life, some of the uncertainties, originating
from nature or humans, cannot be modelled easily by sta-
tionary probabilities. Their distributions are unknown a priori.
Taking the urban waste collection problem as an example,
family parties or Christmas often result in a higher food
consumption and a significant increase in the amount of waste,
while zero waste collection demand occurs occasionally during
spring holidays. Variables in such scenarios can hardly be
modelled by fixed probability distributions. As pointed out by
Wang et al. [10], in reality, only a set of scenarios2 is likely
to be available. Afterwards, research has been conducted on
searching robust solutions for a set of deterministic samples
of uCARP without assuming a priori known distributions for
uncertainty [10], [17].

The exact values of random variables are known only at
the time of reaching a task or edge (road or street); therefore,
solutions optimised a priori might be infeasible at the time
of execution. Techniques for avoiding constraint violation
(summarised in Section V-A1) and repair operators for fixing
solutions during execution (Section V-A2) are essential. For
instance, if the amount of waste to collect exceeds the available
capacity of a vehicle, the vehicle will need to return to the
depot, empty its collection, then continue to serve the remained
tasks. How to efficiently adapt a solution to the actual scenario
while minimising the cost and risk is an important topic for
research.

2Different terms, such as “replication”, “sample” and “scenario”, have been
used in the literature to refer to a deterministic realisation of a random process.
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TABLE I
COMPARISON BETWEEN static and stochastic CARP AND dynamic and stochastic CARP.

Static and stochastic CARP Dynamic and stochastic CARP

Planning A priori solution is computed by offline planning Online planning
Online repairing is applied according to actual variable values Re-optimisation while travelling in real time

Tasks/Customers All potential customers are known in advance, while Some customers are known to happen with a probability
each happens with a probability New requests can be made during execution

Timing Sometimes time window is considered Urgency of task is usually considered

3) CARP with fuzzy demand (CARPFD): Instead of using
probabilistic models, fuzzy numbers have been used to model
demands in CARP [18], [19].

4) CARP with stochastic time (CARPST): Different from
the above work, Chen et al. [20], [21] considered the stochas-
ticity of time in the road network daily maintenance problem.
In [20], the problem is formulated as a CARP with stochastic
service and travel times (CARP-SSTT) following a normal
distribution, while in [21], the problem is formulated as an
ARP with stochastic service time without assuming (ARP-
SST) any known variable distribution.

5) Abbreviations: To be consistent with the existing publi-
cations, hereinafter, the abbreviation “DCARP” is used to refer
to the deterministic CARP and “UCARP” is used to refer to the
CARP with uncertainties. The abbreviation “uCARP” stands
for the uncertain CARP defined by [9] considering 4 random
variables. Although “SCARP” is the first abbreviation used
for the CARP with stochastic demands [6], the abbreviation
“CARPSD” [7] will be used as it is more informative. It is
notable that in some literature, the phrase “dynamic CARP” is
used as an alternative to UCARP, such as [22]. However, we
argue that the use of “dynamic CARP” is not suitable here,
as discussed previously in Section III-A2. “CARPFD” and
“CARPST” stand for CARP with fuzzy demands and CARP
with stochastic times, respectively.

C. Modelling uncertainties

A number of work on CARP with uncertainties assumed
certain distributions for non-deterministic variables. This sec-
tion presents the assumptions considered in the reviewed work.

TABLE II
REFERENCES THAT USED ugdb AND uval, TWO UCARP BENCHMARK SETS

EXTENDED FROM THE WELL-KNOWN STATIC CARP BENCHMARK SETS,
gdb [23] AND val [24] RESPECTIVELY, DESIGNED BY [9]. IN ugdb AND
uval, THE DEMANDS OF TASKS AND COSTS OF TASKS FOLLOW GAMMA

DISTRIBUTIONS AND THE PRESENCES OF TASK AND EDGES ARE
MODELLED AS BOOLEAN VARIABLES, AS DETAILED IN SECTION III-C.

Distribution Uncertainties

Gamma Demand of task Cost of edge
Boolean Presence of task Presence of edge

References [9], [10], [22], [17], [25], [26], [27]
[28], [29], [30], [31], [32], [33]

1) Cancelled/unexpected tasks: The presence of tasks is
often modelled as a Bernoulli distribution [9]. Thus, given
a set of potential tasks, the ith task is present with probability

TABLE III
REFERENCES THAT USED SELF-DESIGNED BENCHMARKS, GROUPED BY

THEIR ASSUMPTIONS.

Distribution Uncertainties
Demand of task Time

Normal [6], [11], [13], [12], [34], [35] [20], [21]
Log-normal [36]
Poisson [7], [8]
Uniform [37], [38], [39]
Fuzzy [18], [19]

pi ∈ (0, 1). The case that a task is not present can be
considered as one with 0 demand. When executing a solution,
if a task is no longer present, the vehicle will skip the task
and travel to the next one via the shortest path. The presence
of tasks will affect the set of tasks to be served, the domain
of solution variables, Eqs. (6) and (2) in the model formulated
in Section III-A1.

2) Edge failure: The case in which an edge is not present is
called an edge failure, possibly due to a broken path or heavy
traffic. When an edge failure occurs, the cost of this edge is
set to∞. If there is a task on this edge, the vehicle will take it
as a cancelled task. The edge failure is also often assumed to
follow a Bernoulli distribution [9]. The presence of edges is
crucial for calculating the deadheading costs, which are terms
of the total cost of a solution, as detailed in Section III-A1.

3) Random demand: In real-world problems, the edge-
demand is often random. For instance, in the urban waste
collection problem, the amount of waste on a street is non-
deterministic. In the parcel collection problem, an order could
change suddenly. A random demand needs to respect the
following constraints: it should not be negative or exceed
the vehicle capacity Q. If the demand of a task exceeds the
available capacity of a vehicle, then the vehicle fails to serve
this task and a route failure occurs. The capacity constraint Eq.
(7) formalised in Section III-A1 is violated. As a consequence,
an extra trip (i.e., returning to the depot and then going back to
the task) is required. In most of the studied stochastic models
for demands, their expectations are known. The most studied
models are truncated normal, Poisson and Gamma models,
while another important category is the estimation of demands
by sampling scenarios (e.g., [10]).

a) Uniform distribution: In the waste collection prob-
lems considered in [37], [38], [39], random demands were
generated using uniform distribution.

b) Truncated normal distribution: The urban waste col-
lection problem has been formulated as a CARPSD and the
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demand of each task was assumed to be a random variable
following a truncated normal distribution in [6], [11], [13],
[12], [34], [35], ignoring the extremal case such as Christmas.
The normal distribution is truncated to avoid exceeding the
vehicle capacity Q and negative demand, and its standard
deviation σ(v) is set to α · d(ti), where d(ti) is the mean
of the demand of the ith task ti and α is a positive control
parameter. The demand of the ith task, ti with this truncated,
multiplicative normal noise, is formalised as D(ti) ∼ d(ti) +
max{0,N (0, σ2

i )}, where σi = α · d(ti) and the control
parameter α is usually set to 0.1.

c) Log-normal distribution: Log-normal distributed
stochastic demands have been used in [36].

d) Poisson distribution: In [7], [8], the CARPSD is
studied assuming that the stochastic demands follow Poisson
distributions.

e) Gamma distribution: Mei et al. [9] assumed that the
perturbation on demands follows a Gamma distribution with
shape parameter k and scale parameter θ to avoid negative
noises, denoted as G(k, θ). As the random presence of tasks
is also considered in [9], the demand of the ith task, ti, is
modelled as D(ti) ∼ G(ki, θi) if rand < pi, otherwise,
D(ti) = 0. The probability of the presence of task i is denoted
as pi and is set as 0.9 in [9]. The shape parameter is set as
ki = 20 for all the tasks to make the Gamma distribution close
to normal distribution and the scale parameter θi is set to di

piki
so that the expected value of the random demands is equal to
its static value [9]. A number of work, summarised in Table
II, have used the UCARP instances designed by [9].

f) Fuzzy demand: Eydi and Javazi [18] studied multi-
commodity CARP and represented the demand of every com-
modity on a serving edge as a triangular fuzzy number [18].
Babaee Tirkolaee et al. [19] formulated an urban solid waste
management problem as the multi-trip CARPSD under fuzzy
demands.

4) Random deadheading cost: Due to the speed limit,
condition of roads, traffic and load, the deadheading costs are
often non-deterministic. This can lead to different values of
total cost if an identical solution is simulated more than once.
Mei et al. [9] modelled the deadheading cost as a Gamma
distribution, taking into account the probability of the presence
of path between the vertices i and j, qi,j . The deadheading
cost of the path between the vertices i and j is defined as
dci,j ∼ G(kci,j , θ

c
i,j) if rand < qi,j ; otherwise dci,j = ∞. In

[9], the shape parameter kci,j and the probability qi,j are set
to 20 and 0.95, respectively. The scale parameter θci,j is set to
dci,j
kdi,j

[9].

D. Benchmarks of CARP with uncertainties

The most used technique to generate benchmark functions
for CARP with uncertainties is by adding random perturba-
tions to one or more variables of existing DCARP instances to
model uncertainties or replace the deterministic parameters by
user-defined stochastic distribution presented in Section III-C.

To the best of our knowledge, the benchmark sets of
CARPSD and UCARP are usually extended from 3 well-
known benchmark sets of static CARP, gdb [23], egl [40] and

val [24]. The corresponding UCARP benchmark sets designed
by [9] are referred to as ugdb, uegl and uval, respectively. In
particular, ugdb and uval have been popular and are most used
in recent years. Tables II summarises the list of articles that
have used ugdb and uval in their case studies and serves as a
list of baselines.

In some of the work, such as [6], [37], artificial instances
have been used as test cases. Chen et al. [20], [21] designed
instances based on real data of road network in Shanghai city.
However, the artificial instances are often small- or medium-
scale, and smaller than the biggest instance in ugdb and uval.
To illustrate the popularity of stochastic variables and their
distributions assumed in the self-designed instances, the list
of articles that have used self-designed instances are provided
in Table III, grouped by their assumptions.

E. Summary of uncertainty modelling

The study on CARP with uncertainties has a short history,
despite its importance in real life. Different variants have
been proposed based on the actual non-deterministic variables
in the corresponding real-world applications. Modelling the
uncertainties is important both for the problem formulation
and the generation of scenarios for testing solutions or solvers,
as the uncertain variables affect the feasibility of solutions and
the actual total cost. The assumption on models relies on the
knowledge of the actual problem and accessible data, e.g.,
the amount of snow on each street during the past month in
the snow removal problem and amount of waste in the urban
waste collection problem. When the historical data of uncertain
variables are available, the prediction of variables is feasible
in some of the cases or at least the bounds for the variables
can be determined. Additional forecast information will be
beneficial for adjusting the model, a distribution controlled by
one or more parameters, which are called stochastic control
parameters in this paper. In most work, the demand of tasks is
assumed to follow a Gamma or normal distribution (cf. Tables
II and III) controlled by given static parameters. However,
some of the uncertainties do not follow a Gamma or normal
distribution, or even cannot be modelled as known probability
distributions. Additionally, rarely occurring events are often
ignored while designing the model. Building more realistic
variable distributions and scenario-based optimisation methods
without assuming variable models are two valuable directions
for research.

IV. RELIABILITY AND ROBUSTNESS OF SOLUTIONS

In the deterministic CARP, the commonly used performance
measure of a solution xxx is the total cost C(xxx), defined in
Eq. (1). Solvers for DCARP aim at minimising C(xxx) while
satisfying the constraints, as formulated in Section III-A1. In
the non-deterministic versions, due to the random variables,
the exact value of the total cost of a given solution xxx is
computable only after serving all the available tasks. The lower
bound of solution costs are unknown. In the deterministic
CARP, the number of trips, T (xxx), is deterministic, while in
the uncertain version, it may be higher than the number of
vehicles due to route failures. Thus, one or more vehicles
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may route extra trip(s) due to route failures as described
previously in Section III-C3, which implies higher total cost.
Therefore, special performance measures should be designed
for evaluating the reliability and robustness of solutions opti-
mised for the CARP with uncertainties, and special repairing
operators should be designed for handling the violation of
constraints. The performance of solvers or repairing operators
in robust optimisation of CARP with uncertainties can be
evaluated by the quality of their recommended solutions.
When evaluating a solution, a number of evaluations is often
needed in an uncertain environment in order to obtain a good
estimation of the solution’s quality. The expected performance
or average performance over the tested scenarios is widely
used to measure the quality of a solution, while the worst-
case performance and the variance are often used to measure
its robustness.

The performance measures proposed so far in the literature
are summarised as follows, some of which have been directly
utilised as optimisation objectives (Tables IV and V).

A. Performance measures using known variable distributions
As presented in Section III-D, the instances of CARP with

uncertainties are generated based on a benchmark of DCARP
instances, by replacing the deterministic edge-cost with a
stochastic model. If the expected values are calculable (e.g.,
random demand respecting a normal distribution), the expected
values and standard deviations of performance indicators can
be used to measure the reliability of a solution, such as in [6],
[8], [36], [37].

1) Expected cost & deterministic cost: The expectation of
variables was set as the deterministic variables of the DCARP
used for generating CARPSD in [6], [12]. Given a solution xxx,
the deterministic cost of the DCARP, denoted as Cd(xxx), is used
to model the expected cost of the corresponding CARPSD or
uCARP, denoted as E[C(xxx)] [6], [9].

2) Expected number of trips: The number of trips influ-
ences the cost of returning to the depot. Minimisation of the
expected number of trips [11], E[T (xxx)], implicitly leads to the
minimisation of cost.

3) Expected makespan: The cost of the longest trip in a so-
lution xxx is called makespan [34]. Its expectation is denoted as
E[M(xxx)]. Fleury et al. [34] applied bi-objective optimisation
considering both the total cost of the trips and the makespan.

4) Variability: The measure variability [6], [12] is defined
as σ[C(xxx)]

E[C(xxx)] and calculated for evaluating the robustness of any
given solution xxx. In [6], [12], it was observed that taking
into account the standard deviation of costs in the objective
function led to lower variability, thus producing more robust
solutions.

Using expectation as objectives or measures is easy to
execute and methods for handling DCARPs can be applied
directly. However, it is less realistic in real-world applications
as the probability distributions of random variables are usually
unknown.

B. Performance measures over multiple simulations
When the exact distributions are unknown or the expectation

and variance cannot be computed directly, multiple simulations

over different scenarios often have to be carried out in order
to estimate expectations and variances.

1) Average performance: In practice, expectations of vari-
ables are sometimes unknown and it is not possible to sample
all the scenarios of a CARPSD or uCARP. Statistics collected
during n ∈ N+ independent simulations of xxx can be used to
estimate some performance measures (e.g., [6], [12]).

a) Estimation of cost: The empirical average of the total
cost En[C(xxx)], as well as the empirical standard deviation
σn[C(xxx)], have been widely used for estimating the expected
cost E[C(xxx)] and standard deviation σ[C(xxx)], respectively.
Examples include [6], [12], [10], [17].

b) Estimation of number of trips: Similar to the above,
the empirical average of the number of trips En[T (xxx)], as well
as the empirical standard deviation σn[T (xxx)], have been used
for estimating E[T (xxx)] and σ[T (xxx)], respectively. Examples
also include [6], [12], [10], [17]

c) Robustness estimator: The variability can also be
estimated by σn[C(xxx)]

En[C(xxx)] [11].
2) Best-case performance: The best-case performance, de-

fined as the cost of the best solution and the number of trips
in the best solution found, is used as a performance measure
by Fleury et al. [6]. Such evaluation is optimistic but it gives
a brief idea of how low the cost could possibly be.

3) Worst-case performance: A pessimistic measure is the
worst-case performance, i.e., simulating a solution on random
realisations of a UCARP instance and its worst performance
(highest total cost or highest number of trips) used as the
performance metric. Then, the solution with the best worst-
case performance is recommended. This is the classic Wald’s
maximin model [41] for decision making. Such a performance
measure is also called a robustness measure.

C. Other robustness measures

The performance measures presented above are used most
often in the literature. This section summarises some other
metrics for measuring robustness of solutions other than the
worst-case performance measures, variability [6], [12] and the
robustness estimator [11]. These measures are designed to
quantify the feasibility of solutions under uncertainties (e.g.,
the overflow of capacity on a route) or serve as additional
objectives [9].

1) Interrupted trips: A trip may be interrupted due to an
augmented demand or the absence of an edge. This induces an
increase in the number of trips. Fleury et al. [11] considered
directly the percentage of simulations with interrupted trips
among n simulations of a given solution xxx to estimate the
probability of trip interruption, which is also the probability
of introducing extra trip(s) into the solution xxx.

2) Threshold-based robustness measure: In real-world ap-
plications, optimising the worst-case performance can be
conservative and the expected performance is sometimes not
computable as the true model of uncertainties is unknown
or difficult to compute. The probability of reaching a given
quality threshold, specified by decision makers with their
affordability, was introduced as a measure in [9], but not
actually used in their study.
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3) Reliability-based robustness measure: The feasibility of
a solution cannot always be guaranteed due to the possible
uncertainties in the constraints. The reliability of a solution
can be measured by the probabilities of satisfying constraints.
Mei et al. [9] discussed a reliability-based robustness measure
which requires a lower bound P0 (i.e., confidence probability),
for the probability of satisfying a given constraint g: P[g(xxx) ≤
0] ≥ P0.

4) Repair-based robustness measure: The repair-based ro-
bustness measure defines repair operators to change an infeasi-
ble solution to a feasible one [9]. The repair-based robustness
measure is more favourable than the reliability-based one
because, in UCARP, the constraints are hard constraints and
an infeasible solution should be repaired to be feasible [9].

D. Measures under conditions on confidence probability

In addition to the minimisation of average cost and the
number of trips, more sophisticated measures have been used
as optimisation objectives [12].

1) With an upper bounded probability of an extra return
to the depot: Minimisation of E[C(xxx)] under the condition
pi ≤ ε for any i with a fixed ε > 0 [12], where pi is the
probability of returning to the depot during the ith route.

2) Upper bounded probability of number of trips: Min-
imisation of the empirical average cost of solution xxx over n
simulations, under the condition P[T > t] ≤ ε with ε > 0,
where T is the actual number of trips and t is a given upper
bound [12].

3) With upper bounded variance of cost: Minimisation of
the empirical average cost of solution xxx over n simulations,
under the condition σ[C(xxx)] ≤ ε with a fixed ε > 0 [12].

E. Relative performance measures

In the deterministic case, if the lower bound of cost (LBC)
is known, it is straightforward to evaluate a solution by
computing the distance of its cost to LBC and to evaluate
an algorithm by measuring how fast it converges to LBC .
However, in the uncertain case, there is no fixed optimal
solution due to the random aspect. Therefore, the relative
performance measure is also used for evaluating a given
algorithm A, realised by comparing the solutions computed
by A to some baseline solutions [6], [11], [13], [36], [38].
For instance, Fleury et al. [6] calculated the percentage of
simulations with a higher number of trips than a baseline
solution computed by a hybrid genetic algorithm. The studies
of [11], [13] compared the empirical average cost of solutions
computed by their proposed stochastic memetic algorithm
(detailed later in Section V-B2a) against the ones computed
by a deterministic memetic algorithm on a set of CARPSD
instances.

F. Multiobjective measures

All the performance measures presented in Sections IV-A–
IV-D can be set as objectives for solvers. Sometimes, more
than one metric should be optimised depending on the ac-
tual needs of the real-world applications. Multiple objectives

can be optimised simultaneously using some multiobjective
optimisation (MOO) approaches or be considered as a single
objective using a linear combination of them. In [11], [12],
both the average cost and its variance are combined by a linear
combination of these two objectives, E[C(xxx)]+ρσ[C(xxx)] with
a constant ρ. Bi-objective optimisation approaches have been
applied to CARP with uncertainties in [34], [35], [18], [39].

G. Computation time

The run time performance is important for applications
in reality. Most of the published work did not report the
computation time; only a few of them did.

The run time for finding the optimal solution of DCARP in-
stances, transformed from CARPSD assuming known variable
expectations, was reported in [11], [12], [35], [8]. In [37], [38],
[39], the run time performance of solving the robust models
of CARPSD was evaluated using different solvers. When the
variable distributions of UCARP are unknown, the run time is
defined as the execution duration till certain stopping criteria
are met, such as when a given number of generations elapses
or when a robust solution dominates for a given number of
iterations [10], [17]. Chen et al. [20] studied the average run
time of solving some CARP-SSTT instances optimally, while
the run time of finding ε-optimal solutions is studied in [7].
Instead of the run time of (approximately) solving UCARP
instances, Maclachlan et al. [28] reported the computational
time for training routing policies.

Due to different UCARP variants, the computation time
is often very difficult to compare directly among different
studies.

H. Discussion

The performance measures of solutions for CARP with
uncertainties can be categorised into different groups, consid-
ering the objectives, constraints, scenarios and the dependence
on variable distribution assumptions, as summarised in Table
IV. The measures used in each publication reviewed in this
survey are given in Table V.

Measures for evaluating solutions are usually defined or
selected by human decision makers. A solution to UCARP
with low risk of extremely high cost can be too conservative
and leads to low reward or high cost. Sometimes, solutions
with high expected or average performance are preferred,
while solutions with low risk are favourable in the cases that
failure leads to high cost. Balancing the trade-off between risk
and cost is not trivial. Given a set of solutions (decisions),
the human decision makers need to determine the optimal
solutions using pre-defined decision-making criteria based on
the practical consideration.

In Table IV, measures (1)-(9) and (15)-(17) are not very
practical as they are calculated based on known variable
distributions, which are usually not accessible in real-world
applications. Instead, measures (10)-(12) and (18)-(20) over a
set of given scenarios can be calculated and then used. (14)
and (22) indicate how bad a situation the evaluated solution
could lead to, while (13) and (21) indicate how good the
situation could be. They could be regarded as pseudo lower
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or upper bounds. It is possible in a solution that a large
number of vehicles or trips are involved with a low travel
cost, which will lead to a high cost of vehicle usage. In such
cases, the measures related to the number of trips, (15)-(22),
are crucial. Measures (23) and (24) help to handle stochastic
constraints. As the actual lower bound of cost is unknown in
the CARP with uncertainties, the relative performance measure
(25) assists the understanding of solution quality. The multi-
objective measure (26) generally refers to any measure which
considers more than one measure presented above.

V. SOLUTION APPROACHES

After reviewing uncertainty models and performance mea-
sures, this section categorises different solution approaches to
robust optimisation for the CARP with uncertainties. CARPs
can be transformed into VRPs. However, the number of
vertices of the resulting VRP triples the number of tasks of
the original CARP [42], which implies an increase in the com-
putation time. Therefore, the methods for solving (stochastic)
VRPs [43], [44], [45] are often not suitable to be applied to
solving (stochastic) CARPs. Section V-A presents the uncer-
tainty handling techniques designed specially for avoiding the
trip interruptions (Section V-A1) and repairing failed solutions
(Section V-A2). Published work around robust optimisation
in CARP with uncertainties will be briefly divided into two
categories: evaluating the robustness of solutions optimised
for the deterministic CARP transformed from the UCARP,
and approaches for directly searching for robust solutions
for UCARP. As approaches of these two categories usually
overlap, we propose a new taxonomy as shown in Figure
3 (Sections V-B and V-C) to facilitate our understanding
of different approaches. Finally, recent advances in learning
routing policies are presented in Section V-D.

A. Handling uncertainties

Uncertainties in CARP usually lead to re-planning of routes.
There are four major sources of uncertainties: a cancelled task,
an absent edge, a task on an absent edge and a violation
of vehicle capacity. The first one is easy to understand. The
second and third ones may be due to a temporal maintenance
or an accident on a road (with a task), which is difficult to
forecast at the time of planning. The last one is due to the
perturbation of demands. A vehicle may exhaust its capacity
before completing a trip, then a trip interruption, sometimes
called route failure, occurs. A prior and posterior techniques
(Figure 1) have been proposed to reduce the probability of
route failure or increase the ability to react optimally in such
situations.

1) A prior techniques: To reduce the probability of route
failure due to a violation of vehicle capacity, two a prior
techniques by editing the problem constraint [6] and objective
function [12] have been proposed, respectively.

a) Slack approach - conservative constraint: To avoid
solutions in which the total load is close to the vehicle
capacity Q, Fleury et al.[6] reduced the vehicle capacity
by k% before the deterministic optimisation process. This
technique is named as a slack approach in [6], while the

regular constraint on capacity without reduction, as in classic
DCARP, is called the tight approach. In [6], a pseudo capacity
90%Q is used during optimisation, while the actual capacity
Q is used when evaluating the solutions. The slack approach is
capable of avoiding some violation of capacity constraint due
to stochastic demands, however it may increase the number of
trips, which implies an increase in the solution cost. Moreover,
the control parameter k is difficult to set. A similar approach
was used by [36] to generate DCARP instances.

b) Law approach - bi-objective function: Different from
revising the vehicle capacity as in the slack approach, the
law approach [12] varies the objective functions to handle
uncertainties. Instead of minimising the cost of solutions, the
law approach considers the minimisation of a weighted sum
of the cost and its standard deviation.

2) Posterior techniques - repairing operators: Several op-
erators have been designed for repairing infeasible solutions
during execution [9].

a) Skip-and-jump: In case of a cancelled task or when
its actual demand is 0 at the time of serving, as well as when
a task is on an absent edge, the vehicle skips the task and
jumps to the next one.

b) Alternative shortest path: If an edge without task is
absent, namely no longer being present on the map, this absent
edge is replaced by the shortest path between its two vertices.

c) Recourse strategy - return and continue: In case of
a violation of vehicle capacity before serving a task t, the
vehicle must return to the depot via the shortest path, refill
goods or unload goods, go back to the task t and serve it,
then continue its planned trip (e.g., [11], [7]). At least one
supplementary trip will be induced depending on the number
of times of capacity violation of a planned trip occurred, which
implies an increase in the total cost. Note that this repairing
technique is applied under the assumptions that (i) a task’s
actual demand is known before it is served and (ii) assigning
another vehicle is impossible or inefficient. Techniques like
this are called recourse strategies [11]. For instance, in the
waste collection problem, a vehicle may be fully filled in the
middle of a road (edge), thus cost has already been caused.
For a better understanding of recourse strategies, we translate
the recourse strategy used by [9] into Algorithm 1, which also
facilitates its reproduction.

3) Resampling for evaluation: Techniques for handling
uncertainties are important in optimisation under uncertainties,
among which sampling is the most discussed for reducing
the probability of mis-ranking two solutions due to uncertain
test scenarios [46], [47]. In [10], the solutions for uCARP
were evaluated on an identical set of scenarios for a fair
comparison. Wang et al. [17] resampled uCARP instances for
evaluating each solution and used its maximal cost obtained on
the sampled instances (thus worst-case cost) for ordering the
solutions. Chen et al. [20], [21] used Monte Carlo simulations
to evaluate the robustness of solutions.

These techniques for handling uncertainties are often in-
tegrated into the robust optimisation approaches for approxi-
mately solving CARPs with uncertainties. Sections V-B and
V-C will present the approaches when assuming known or
unknown distributions of variables, respectively.
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TABLE IV
PERFORMANCE MEASURES OF SOLUTIONS FOR THE CARP WITH UNCERTAINTIES. THE NOTATIONS USED IN THIS TABLE AND DETAILED DESCRIPTION

OF EACH MEASURE ARE EXPLAINED IN SECTION IV. THE ρ IN MEASURES (2), (8), (11), (16) AND (19) IS A USER-SPECIFIED CONSTANT FOR A LINEAR
COMBINATION OF EXPECTATION/AVERAGE AND STANDARD DEVIATION.

Traget With distribution assumptions Scenario-based
Average Best-case Worst-case

Cost

(1) Expected cost: E[C(xxx)]
(2) E[C(xxx)] + ρσ[C(xxx)] or σ[C(xxx)]

(3) Variability: σ[C(xxx)]
E[C(xxx)]

(4) E[C(xxx)] with upper bounded proba-
bility of an extra return

(5) E[C(xxx)] with upper bounded proba-
bility of #trips

(6) E[C(xxx)] with upper bounded vari-
ance of cost

(7) Expected makespan: E[M(xxx)]
(8) E[M(xxx)] + ρσ[M(xxx)] or σ[M(xxx)]
(9) Threshold-based robustness indicator

(10) Average cost En[C(xxx)] without addi-
tional condition

(11) En[C(xxx)] + ρσn[C(xxx)] or σn[C(xxx)]

(12) Robustness estimator: σn[C(xxx)]
En[C(xxx)]

(13) min
i∈{1,...,n}

C(i)(xxx) (14) max
i∈{1,...,n}

C(i)(xxx)

Trip
(15) Expected #trip: E[T (xxx)]
(16) E[T (xxx)] + ρσ[T (xxx)] or σ[T (xxx)]
(17) Probability of trip interruption

(18) Average #trips: En[T (xxx)]
(19) En[T (xxx)] + ρσn[T (xxx)] or σn[T (xxx)]
(20) Percentage of interrupted trips

(21) min
i∈{1,...,n}

T (i)(xxx) (22) max
i∈{1,...,n}

T (i)(xxx)

Constraints (23) Reliability-based robustness measure
(24) Repair-based robustness measure

Other measures (25) Relative performance measures (applicable to most of the above measures)
(26) Multiobjective measures (applicable to a set of different measures)

TABLE V
SUMMARY OF STUDIED PROBLEM MODELS AND PERFORMANCE MEASURES OF SOLUTIONS FOR THE WORK ON CARP WITH UNCERTAINTIES REVIEWED

IN THIS PAPER. THE FIRST COLUMN INDICATES THE STUDIED PROBLEM MODEL, WHILE THE SECOND COLUMN LISTS RELEVANT REFERENCES. THE
NUMBERS INSIDE “()” ON THE SECOND ROW ARE THE INDICES OF PERFORMANCE MEASURES LISTED IN TABLE IV. THE LAST COLUMN INDICATES IF

THE TIME MEASURE HAS BEEN REPORTED, WHERE “RT” MEANS THAT THE RUN TIME IS REPORTED AND “TT” REFERS TO THE TRAINING TIME FOR
ROUTING POLICIES. IN THE OTHER CELLS (BESIDES THE COLUMN AND ROW HEADERS IN BOLD), “O” STANDS FOR THE CASE THAT THE

CORRESPONDING MEASURE (SHOWN AS ROW HEADER) IS USED AS A (TERM OF) OBJECTIVE FUNCTION IN THE CORRESPONDING PAPER (SHOWN AS
COLUMN HEADER); “

√
” MEANS THAT IT HAS BEEN USED AS A MEASURE WHEN DISCUSSING THE EXPERIMENTAL RESULTS, BUT NOT AS A (TERM OF)

OBJECTIVE FUNCTION; “D” MEANS THAT IT IS DISCUSSED BUT NOT USED.

Variant Ref Performance measures Time(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26)

CARPSD

[6] O
√ √ √ √ √ √ √ √ √ √

[11] O O
√ √ √ √ √ √ √

RT
[12] O O

√
D D D

√ √ √
D

√ √
RT

[13] O
√ √ √ √ √

[34] O O O O
√

[35] O O O O
√

RT
[7]

√
RT

[8] O O O RT
[36]

√
O

√ √

[37] O
[38] O

√
RT

[39] O O
√

RT

uCARP

[9] O D
√

D D
√

[22] O D
√

D D
√

[10] O
√ √ √

RT
[17]

√ √
O RT

[25] O
√

[26] O
[27] O
[28] O TT
[29] O
[30] O

√

[31] O
√

[32] O
√

[33] O
√

CARPFD [18] O
√

O
√ √

[19] O

CARPST [20] O RT
[21] O
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V-A Handling uncertainties

V-A1 A prior techniques

V-A1a Tight approach V-A1b Law approach

V-A2 Posterior techniques - repair operators

V-A2a Skip-and-jump V-A2b Alternative shortest path V-A2c Recourse strategy

V-A3 Resampling for evaluation

Fig. 1. Techniques for handling uncertainties.

Algorithm 1 The recourse strategy used in [9], translated into
pseudo-code by us.
Require: Planed route of tasks r = (v0, t1, t2, · · · , tl)
Require: Current location v
Require: Current available capacity Q′

1: Locate the next task t
2: if Next task t exists then
3: if Q′ ≥ E[d(t)] then
4: Traverse to head(t) through the original path
5: else
6: Return to the depot and empty, Q′ = Q
7: Traverse to head(t) through the shortest path
8: end if
9: while tail(t) not reached do . t is not completed

10: Loop 1
11: Serve t progressively and update Q′

12: if Arrive at tail(t) then . t is completed
13: break while
14: end if
15: if Q′ = 0 then . Capacity is exhausted

. on the way of service
16: Return to the depot and empty, Q′ = Q

. Neglect the remaining demand
17: Traverse to head(t) through the shortest

path from current location
18: break Loop 1
19: end if
20: End Loop
21: end while
22: else
23: Return to the depot
24: end if

B. Robust optimisation with variable distribution assumptions

This section presents the work on robust optimisation in
CARP with uncertainties when known variable distributions
are assumed.

1) Deterministic optimisation, stochastic evaluation - solv-
ing transformed DCARP: A number of existing work did
not design algorithms for solving CARP with uncertainties
directly, but addressed UCARP as transformed DCARP and
solved it using DCARP solvers, then evaluated the solutions
on realisations (samples) of the corresponding UCARP. They
focused more on the evaluation of solutions for selecting
optimal heuristics for the UCARP. A two-phase framework,
deterministic optimisation phase and stochastic evaluation
phase (DOSE), has been widely used in the robust optimisation

of UCARP. We illustrate this two-phase framework, DOSE,
in Figure 2. During the optimisation phase, algorithms for
solving DCARP are applied directly to the static version of
the corresponding UCARP, where they solve the UCARP
instances by utilising the expectation of the random variables.
In some work, the evaluation phase is also called the replica-
tion phase because each solution is performed on a number
of replications of UCARP. Each replication of a UCARP
is a DCARP instance as the random variables are replaced
by their deterministic realisations, usually via Monte Carlo
simulations. This technique is also called “resampling” in
noisy optimisation aiming at reducing the probability of mis-
ranking solutions [48], [49]. This framework assumes that the
model of the random variables, or at least, the expectation of
the random variables, perfectly reflects the true one in real
life. In other words, it assumes that the expectations of the
random variables are known.
• Deterministic optimisation process: During this stage, the

given UCARP with stochastic models for demands of known
expectations is transformed to a DCARP instance of which
the demands are deterministic and equal to the expectations
of the stochastic demands. Then, the resulting DCARP
instance can be solved by existing heuristics for the DCARP.

• Stochastic evaluation process: Then, the heuristics are
evaluated and selected based on some predefined perfor-
mance metrics, computed using the simulation results of
their optimised, deterministic solutions on a set of sampled
instances of UCARP. Some repairing techniques may be
applied during simulation if the actual demand of a task to
serve next exceeds the vehicle’s available capacity. Section
IV gives a comprehensive review of different measures that
have been used in the literature.

Core components involved in the above framework are: (i)
the stochastic models for demands; (ii) the heuristics for the
DCARP, (iii) the performance metrics for evaluating heuristics
and (iv) the repairing techniques. Complete lists of previously
studied (i), (iii) and (iv) have been introduced in Section III-C,
Sections IV and V-A2, respectively. Although all the heuristics
for the DCARP can be used in this two-stage framework, we
will not cover all of them but only the ones used by the pub-
lications with a focus on UCARP. The corresponding demand
model and performance metric(s) will also be discussed.

The algorithms designed for DCARP that have been used
in this framework are summarised as follows.

a) Meta-heuristics: Meta-heuristics have been widely
used for handling DCARP [2], some of which have been
used in the DOSE framework. CARPSD with truncated normal
random demands was considered in [13], [12], [11] and this
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UCARP I

Apply a prior techniques

Replace random variables

DCARP IE

Optimise by solver for DCARP

Solution xxx

Sample r deterministic realisations

DCARP I1 DCARP I2 · · · DCARP Ir

Simulate xxx Simulate xxx · · · Simulate xxx

C(xxx, I1) and T (xxx, I1) C(xxx, I2) and T (xxx, I2) · · · C(xxx, Ir) and T (xxx, Ir)

Failure? Failure? Failure?Repair Repair Repair

Compute user-specified metrics for evaluating xxx

Yes Yes Yes

No No No

Phase 1: Optimisation Phase 2: Evaluation

Fig. 2. Two-phase framework: deterministic optimisation - stochastic evaluation (DOSE). DCARPE denotes the DCARP instance generated by replacing the
random variables of the given UCARP by their expectations. I1, · · · , Ir denote the r deterministic realisations (samples) of UCARP. C(xxx, Ii) and T (xxx, Ii)
denote the resulted cost and number of trips of simulating a solution xxx on a deterministic realisation Ii.

two-stage framework was used. In [13], [12], a hybrid genetic
algorithm (HGA) is used as the DCARP solver. Besides the
average performance measures presented in Section IV as
optimisation objectives, the study of [12] also considered
the average cost and its variance simultaneously by a linear
combination of these two objectives, En[C(xxx)] + ρnσ[C(xxx)],
where ρ is a constant. The empirical average of solution xxx over
n simulations, En[C(xxx)], is used to estimate the expectation
of the cost of xxx. In [11], a deterministic memetic algorithm
(MA) [50] is used as the DCARP solver. This heuristic is
referred to as deterministic MA (DMA). In its comparison
and selection steps, the solutions are evaluated on the associate
DCARP only. We translate the procedure into a more general
deterministic generate-and-test process as in Algorithm 2. In
the “generate” step, an algorithm for DCARP generates one
or more solutions, and then the generated solution is evaluated
and tested if it is better than the current recommendation.
Fleury et al. [11] evaluated a DMA (denoted as MA1) and
another DMA with slack approach (denoted as MA2) on
CARPSD with the minimisation of deterministic cost as ob-
jective, and concluded that the use of slack approach increased
the deterministic cost of the associate DCARP but provided
robust solutions to CARPSD. MA was further extended to
stochastic MA (SMA) in [11] for solving CARPSD instead of
DCARP, detailed later in Section V-B2a. During the stochastic
evaluation, Fleury et al. [11] assumed that (i) a trip can be
interrupted for at most once and (ii) if it occurs, with a high
probability the point of failure is just before the last task.
[12] minimised both the average cost and variance by a linear
combination of these two objectives.

Mei et al. [9] also used the DOSE framework. During
the deterministic optimisation phase, an MA with extended
neighbourhood search (MAENS) [51] and RTS*, which is
a repair-based tabu search (RTS) with an adjusted stopping
criterion [52], were used to solve the gdb instances, based
on which their uCARP instances are generated. A core fea-

Algorithm 2 Deterministic generate-and-test process, gener-
alised from [11]. At its comparison and selection steps, the
solutions are evaluated on the associate DCARP only.
Require: I: A UCARP with stochastic models of variables

of known expectations
Require: SD: A DCARP solver, e.g., a memetic algorithm

1: IE ← Transform I to its associate DCARP by replacing
the stochastic variables to their expectations

2: xxx← SD generates a solution for IE
3: y ← C(xxx, IE) . Evaluate xxx once on IE , other measures

. in Table IV can be used
4: while Stopping criteria not met do
5: xxx′ ← SD generates a solution for IE from xxx

by perturbation
6: y′ ← C(xxx′, IE) . Evaluate xxx′ once on IE
7: if y′ < y then . Test and replace
8: xxx← xxx′

9: y ← y′

10: end if
11: end while
12: return xxx

ture of [9] is that, instead of recording only the best-so-far
solution, all the best feasible solutions updated during the
search process (line 18 of Algorithm 3) are recorded. During
the stochastic evaluation phase, each solution is simulated on
30 realisations of the corresponding uCARP and the lowest
empirical average cost of the recorded solutions is used as
the robustness indicator [9]. Mei et al. [9] observed that (i)
for a DCARP instance, there could be more than one globally
optimal solution of different robustness levels; (ii) the optimal
solution for uCARP, in terms of the empirical average cost,
may not be the optimal solution for DCARP, and concluded
that solving uCARP instances by applying DCARP solvers to
its associate DCARP instance will make finding highly robust
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solutions difficult.

Algorithm 3 Stochastic generate-and-test process assuming
known expectations of random variables, summarised by us.
Require: I: A UCARP with stochastic models of variables

of known expectations
Require: r: Resampling number

1: IE ← Transform I to its associate DCARP by replacing
the stochastic variables to their expectations

2: xxx← Generate a solution for IE
3: y ← 0
4: for i ∈ {1, · · · , r} do
5: Ii ← Sample a deterministic realisation of I
6: y ← y + C(xxx, Ii) . Evaluate xxx once on Ii and

. cumulate the cost
7: end for
8: y ← y/r . Average cost of xxx over r simulations,

. other measures in Table IV can be used
9: while Stopping criteria not met do

10: xxx′ ← Generate a solution for IE from xxx
by perturbation

11: y′ ← 0
12: for i ∈ {1, · · · , r} do
13: Ii ← Sample a deterministic realisation of I
14: y′ ← y′ +C(xxx′, Ii) . Evaluate xxx′ once on Ii and

. cumulate the cost
15: end for
16: y′ ← y′/r . Average cost of xxx′ over r simulations
17: if y′ < y then . Test and replace
18: xxx← xxx′

19: y ← y′

20: end if
21: end while
22: return xxx

The arc routing problems with stochastic demands
(ARPSDs) are considered by [36] and the procedure shown
in Algorithm 4 is used. Randomised savings heuristic was
applied to the arc routing problem (RandSHARP) for solving
the DCARP instances sampled using the slack approach (πs),
and the reliability and robustness of the obtained solution were
estimated via Monte Carlo simulations (πe) to decide whether
to continue or stop searching [36].

b) Bi-objectivity: The above work only considered single
objectives, either minimising the total cost or minimising the
total number of trips. Lacomme et al. [53] incorporated a
local search to a NSGA-II [54] for solving DCARP with the
minimisation of the cost and the duration of the longest trip of
a solution as its two objectives. Then, a bi-objective NSGA-II
with local search was used as solver during the deterministic
optimisation phase for solving CARPSD [34], [35]. In [18],
the total cost and the total number of vehicles were minimised
simultaneously.

c) Other algorithms: In [7], DCARP was formulated as
a set partitioning problem and solved using a branch-and-price
algorithm.

2) Stochastic optimisation, stochastic evaluation - solving
sampled DCARP:

Algorithm 4 Stochastic generate-and-test process without
assuming known expectations of random parameters.
Require: I: A UCARP
Require: r: Resampling number
Require: πg: Strategy for sampling a DCARP used to gener-

ate solutions
Require: πt: Strategy for sampling a DCARP used to evaluate

and test solutions
1: Is ← Sample an independent deterministic realisation of
I using πg

2: xxx← Generate a solution for Is
3: y ← 0
4: for i ∈ {1, · · · , r} do
5: Ii ← Sample an independent deterministic realisation

of I using πt
6: y ← y + C(xxx, Ii) . Evaluate xxx′ once on Ii and

. cumulate the cost
7: end for
8: y ← y/r . Average cost of xxx over r simulations,

. other measures in Table IV can be used
9: while Stopping criteria not met do

10: Is ← Sample an independent deterministic realisation
of I using πg

11: xxx′ ← Generate a solution for Is from xxx by perturbation
12: y′ ← 0
13: for i ∈ {1, · · · , r} do
14: Ii ← Sample an independent deterministic

realisation of I using πt
15: y′ ← y′ +C(xxx′, Ii) . Evaluate xxx′ once on Ii and

. cumulate the cost
16: end for
17: y′ ← y′/r . Average cost of xxx′ over r simulations
18: if y′ < y then . Test and replace
19: xxx← xxx′

20: y ← y′

21: end if
22: end while
23: return xxx

a) Adaptation of meta-heuristics: MA is adapted to
CARPSD by using the empirical average objective value com-
puted over a number of simulations (as in the Evaluation phase
of Figure 2) for comparing and selecting solutions, instead of
using the deterministic value (Algorithm 2) [11], [12]. The
resulting algorithm is called stochastic MA (SMA) due to
the stochastic evaluation of solutions (Algorithm 3), which
is exactly the same as the stochastic evaluation phase of the
optimisation-evaluation framework; thus, repairing operations
may occur [11]. SMA with different objectives have been
considered; one aims at minimising the expected total cost
(denoted as MA3) while the other aims at minimising the
expected number of trips (denoted as MA4) [11]. Fleury et
al. [11] compared two SMAs, a DMA with slack approach
and a DMA without slack approach on a set of CARPSDs to
the LBCs of corresponding DCARPs. The SMAs were more
robust than the DMAs on the considered CARPSDs.

In [6], [12], only the average performance was used for



13

evaluating solutions, while Mei et al. [9] concluded that such
statistics were not enough to indicate highly robust solutions.

b) Stochastic path scanning with adaptive large neigh-
bourhood search: The study of [8] considered CARPSD with
Poisson distributed demands. In [8], a mathematical analysis
of the probability of route failure and the expected cost was
given under the assumptions that a trip could be interrupted for
at most once and the demand was uniformly distributed on the
corresponding edge. A stochastic path scanning method was
proposed to construct solutions considering the above analysis
as additional constraints and an adaptive large neighbourhood
search (ALNS) heuristic with a removal-insertion operation
was designed to iteratively improve the solutions [8]. At each
iteration of ALNS, a removal heuristic destroys the current
solution by removing served edges and then an insertion
heuristic reinserts the removed edges differently [8]. It is
notable that the used removal (or insertion) heuristic is selected
from a set of removal (or insertion) heuristics using a roulette-
wheel selection with weights updated adaptively according to
the quality of newly constructed solutions by the removal-
insertion operation [8]. The stochastic path scanning method
with ALNS is also applied to CARP with stochastic service
and travel times (CARP-SSTT) [20].

3) Robust optimisation modelling:
a) Stochastic programming model with recourse: CARP-

SSTT following normal distributions was formulated as
stochastic programming models with recourse (SPM-R), min-
imising the serving cost and the expected recourse cost [20].

b) Chance constrained programming model: CARP-
SSTT following normal distributions was also formulated as
a chance-constrained programming model (CCPM) [20]. A
branch-and-cut algorithm was used for solving the CCPM of
small size, aimed at minimising the total serving cost with an
upper bounded probability of extra trips for each vehicle [20].
The solutions found by the branch-and-cut algorithm were
used as references for evaluating the quality of solutions found
by the ALNS algorithm [20]. Eydi and Javazi [18] stud-
ied multi-commodity CARP with fuzzy demands (MOMC-
CARPFD) and formulated it as a fuzzy chance constrained
program (fuzzy CCP) by representing the demand of every
commodity on a serving edge as a triangular fuzzy number.
The proposed model was solved by a multi-objective GA [18].

c) Solving the robust counterpart: Babaee Tirkolaee et
al. [37] proposed a robust optimisation model for CARPSD
based on Bertsimas and Sim’s method [55] assuming known
deviation of demands and solved it approximately using a
hybrid simulated annealing algorithm. The work of [37] was
further extended by taking into account the working time
of drivers [38]. More recently, Babaee Tirkolaee et al. [39]
formulated a bi-objective multi-trip periodic CARP (PCARP)
with stochastic demands and used an invasive weed optimisa-
tion algorithm to solve it approximately.

C. Scenario-based robust optimisation

In the work mentioned above, at each iteration of search,
a new solution is generated for the transformed or sampled
DCARP, in which the variables are set to the expectations of

random variables of the corresponding UCARP or sampled
values following some distribution assumptions, respectively.
Wang et al. [10] pointed out that in real-world applications,
the random variables rarely follow a specific well-formed
distribution; instead, only a finite set of random realisations of
a uCARP (i.e., DCARP instances) is accessible. The problem
is transformed into the search of robust solutions to a given
set of n DCARP instances, A = {Id1 , Id2 , . . . , Idn}, also called
scenarios in decision making problems.

1) Adaptation of meta-heuristics: Wang et al. [10] adapted
MAENS to the scenario-based uCARP by adding an instance
selection mechanism and designing a new fitness function. At
the beginning of search, a population is initialised for each
realisation, thus |A| populations are initialised. Then, at each
iteration of search of the improved MAENS [10], the instance
selection mechanism operates as follows: (i) an realisation, Ip,
is selected from A following a probability distribution πp; and
(ii) two distinct solutions are selected from the population of
Ip as the parents for reproduction. πp is updated periodically
using the current best normalised evaluations searched for each
realisation. The normalised evaluation of a solution s on the
realisation Ip is defined as the EN (s, Ip) =

E(s,Ip)−C∗(Ip)
C∗(Ip)

,
where C∗(Ip) is the cost of all tasks in Ip and E(s, Ip) is the
evaluation of solution s on Ip:

E(s, Ip) = TC(s, Ip) + α · TV (s, Ip), (8)

where α is a user-specified parameter and is adapted during
the searching process. TV (s, Ip) is the total capacity violation
of s and TC(s, Ip) is the total cost of s simulating on the
instance Ip. The new fitness function [10] is defined as

fitness(s) =
∑
Ip∈A

πp · En(s, Ip), (9)

where πp is the probability of selecting the realisation Ip ∈ A
by the instance selection mechanism. It is notable that in [10],
though the weighted average performance overA is used as the
fitness value, the robustness of solutions is measured using the
unweighted average. Wang et al. [10] compared two instances
of the improved MAENS using Eqs. (8) and (9) as objective
function, respectively, on ugdb and uval benchmarks, and
observed trade-off between robustness and time consumption.
The MAENS using (9) achieved more robust solutions but was
more time-consuming due to the evaluation on all instances,
while the MAENS using (8) was computationally faster but
less robust to the perturbation of variables.

2) Estimation of distribution algorithm with stochastic local
search: Similar to [10], Wang et al. [17] focused on searching
for robust solutions over a set of DCARP instances and pro-
posed an Estimation of Distribution Algorithm with Stochastic
Local Search (EDASLS), based on the Edge Histogram Based
Sampling Algorithm (EHBSA) and a novel Stochastic Local
Search (SLS) procedure which is designed to handle the
uncertainties in uCARP. In [17], the worst-case performance
was used when ranking solutions during search.

3) Solving the robust counterpart: Chen et al. [21] for-
mulated the road network monitoring service problem as a
CARP with stochastic service time (CARP-SST) without the
assumptions of known variable distributions made in [20]. A
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Robust optimisation in CARP with uncertainties

V-B Optimisation under distribution assumptions

V-B1 Deterministic optimisation

V-B1a Meta-heuristics (5)

V-B1b NSGA-II (4)

V-B1c Branch-and-price (1)

V-B3 Robust optimisation modelling

V-B3a Stochastic programming (1) V-B3b Chance constrained programming (2) V-B3c Robust counterpart (3)

V-B2 Stochastic optimisation

V-B2a Meta-heuristics (3) V-B2b SPS-ALNS (2)

V-C Scenario-based robust optimisation

V-C1 Meta-heuristics (1)

V-C2 EDASLS (1)

V-C3 Robust counterpart (1)

Fig. 3. Taxonomy of robust optimisation approaches for CARP with uncertainties. The number in brackets indicates the number of papers in that category.

robust optimisation model was built by replacing the constraint
on the stochastic service time variable by a number of con-
straints based on a set of scenarios with deterministic service
time [21]. The proposed model aimed to optimise the worst
case value over the given set of scenarios [21]. It was solved
by a branch-and-cut method and the resulted solutions were
evaluated via Monte Carlo simulations [21].

D. Learning routing policies

Very recently, several machine learning methods have been
applied to learning routing policies for CARP with uncertain-
ties (Figure 4).

1) Genetic programming hyper-heuristic: In [25], [26], the
routing policy for multi-vehicle UCARP was modelled as
a Lisp tree and evolved using genetic programming hyper-
heuristics (GPHH). The routing policy builds the routes in
parallel and it is evaluated by a discrete event simulation
system, which consists of a system state and a priority queue
of 3 events (refill, serve and refill-and-serve events). Mei and
Zhang [26] found that the proposed GPHH generated better
routing policies than the manually designed ones, but clarified
that when the number of vehicles is changed, the policies need
to be retrained.

MacLachlan et al. [27] proposed two new techniques to
improve the GPHH: (i) a no-early-refill filter and (ii) a flood
fill (FF) feature to better handle route failures and reduce the
extra cost. Backhauls to the depot result in extra cost. If the
depot is on the expected shortest path to a task to serve, the
vehicle will automatically refill at the depot and then serve
this task. This leads to small routes and increase in the total
cost due to the backhauls to the depot. The designed no-early-
refill filter excludes the tasks in which the depot is on the
expected shortest path to the task. Another possible cause of
backhauls to the depot is route failures. It was assumed in [27],
[6] that route failures usually occur toward the end of routes.
The closer the failure is to the depot, the shorter the backhaul
is, and the smaller the extra cost is. To determine the tasks
closed to the depot and select the next task to serve, the FF
factor is defined. For each unserved task t, FF (t) is defined
as the number of these shortest paths that t is a member of.
Tasks with smaller FF values are preferred. No feature of the

problem has been used and for each newly sampled scenario,
the routing policy needs to be re-trained.

Very recently, Wang et al. [31], [32] noticed that the routing
policies evolved by GPHH are hard to be interpreted. To evolve
less complex and more interpretable routing policies, two
approaches have been investigated: (i) a two-stage GPHH [31],
which takes the performance as an optimisation objective
during the first stage, then both the performance and the
tree size are optimised with a multi-objective GP proposed
in [31], was designed; (ii) three ensemble methods based
on GP, namely BaggingGP, BoostingGP and cooperative co-
evolution GP (CCGP), were proposed and compared to the
simple GPHH [26], and the experimental study on the tested
UCARP instances showed the potentials of CCGP on evolving
more interpretable routing policies.

Almost all the work reviewed in this paper rely on the
assumption that it is not possible to assign another vehicle
when a route failure occurs. Thus, when a vehicle fails to
serve its assigned task t, it should return to the depot, release
its capacity and then return to the next task to serve; no other,
even nearby, vehicle is capable of serving the task t instead.
This assumption is not always true in reality. To the best of
our knowledge, MacLachlan et al. [28] were the first to split
deliveries in UCARP and proposed an enhanced GPHH with
vehicle collaboration (GPHH-C). The vehicle collaboration
was proved to be effective compared to the GPHH without
collaboration [25] on the ugdb, uval, uegl benchmarks, and
also to EDASLS [17] on most of the tested instances.

2) Knowledge transfer: More recently, Ardeh et al. [29]
assumed that the routing policies of similar scenarios share
similar (sub-)trees, which could be seen as knowledge transfers
among multiple routing policies.

3) Ensemble methods: Wang et al. [33] proposed two novel
ensemble genetic programming approaches, namely diverse
bagging genetic programming (DivBaggingGP) and diverse
niching genetic programming (DivNichGP), to evolve poli-
cies. The former evolves policies sequentially while the latter
evolves policies in a parallel manner. An ensemble of simpler
and more interpretable routing policies were evolved in [33].

4) Solution-Policy co-evolver: The above work focused
mostly on either the evaluation of the robustness of solutions or
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V-D Learning routing policies

V-D1 GPHH V-D2 Knowledge transfer V-D3 Ensemble V-D4 Coevolution

Fig. 4. Methods for learning routing policies.

repairing techniques (sometimes called recourse policy) which
lead to a low extra cost due to additional trips (backhauls
to depots). Liu et al. [30] proposed a new proactive-reactive
approach, called solution-policy co-evolver. In [30], a solution
is represented as a baseline task sequence and a recourse
policy, which are evolved simultaneously in a cooperative co-
evolution manner by an estimation of distribution algorithm
(EDA) and genetic programming (GP), respectively. This
approach was only tested on the single-vehicle case [30] but
could be extended to the multi-vehicle case.

E. Summary of solution approaches

Figures 1, 3 and 4 summarise the techniques for handling
uncertainties, the robust optimisation approaches for CARP
with uncertainties, and the applications of machine learning
methods to routing policies.

In the early attempt to solve the CARP with uncertainties,
different assumptions of variable distribution have been made
(Section V-A). Algorithms for solving DCARP are applied
directly to the static version or deterministic realisations of a
UCARP (Section V-B1) aiming at minimising the expected
cost, then the obtained solutions are evaluated on unseen
samples using diverse performance metrics (Tables IV and V).

Several algorithms are adapted for solving CARP with
uncertainties (Section V-B2). These approaches mostly differ
in (i) the sampling methods of deterministic realisations when
generating intermediate solutions during the search and (ii)
using deterministic evaluation (i.e., sample UCARP once and
then evaluate on the sampled DCARP) or stochastic evaluation
(i.e., sample UCARP multiple times and then average the per-
formance on the sampled scenarios) during the search. Some
other work was interested in designing robust optimisation
models (Section V-B3).

Scenario-based robust optimisation approaches were inves-
tigated without assuming variable distributions (Section V-C).
As the exact values of parameters are known only at the time
of execution in practice, the solutions obtained may become
infeasible. For example, the vehicle capacity may be exceeded
due to unexpectedly high demands of tasks. Consequently,
some work focused on changing the problem formulation to
reduce the probability of route failure (e.g., [6], [12]), and
designing or learning effective and efficient recourse strategies
(also called recourse policies or repairing operators), such as
in [30]. The routing or recourse policies are often evaluated
by the average performance in unseen problem instances.

Techniques for handling uncertainties, including a prior
techniques, posterior techniques and resampling, can be inte-
grated into different approaches for solving variants of CARP
with uncertainties (Figure 3).

VI. DISCUSSION AND CHALLENGES

A. Difficulties in comparing approaches

Different approaches for handling CARP with uncertainties
are rarely compared to each other in the literature, but mostly
compared to some state-of-the-art approaches for solving
DCARP or to some techniques proposed by the same authors,
probably due to the following reasons.

1) Lack of common benchmarks: The proposed approaches
were mostly designed and tested on different problem in-
stances: different uncertainties, different models for uncer-
tainties, a priori known or unknown models. Those problem
instances were designed by adapting differently from well-
known DCARP benchmarks or self-designed instances. As
shown in Tables II, III and V, diverse variants of CARP
with uncertainties have been studied, while for each variant,
different assumptions on variable distributions have been made
and different distributions have been used for sampling the
variables. Only a few work used the benchmarks uval, uegl,
ugdb3. Most work designed their own instances for testing.

2) Usage of different assumptions:
a) A priori known or unknown models: As shown in

Figure 3, most of the approaches assume certain a priori
knowledge of variable distributions while some of them do
not and are scenario-based (e.g., [10], [17]).

b) Assumptions on vehicles: Besides the differences in
assumptions on uncertainties, different assumptions have also
been made on vehicles, which implies different designs of
recourse strategies, as detailed in Section V-A2c. For instance,
some work assumed that a vehicle can have at most one
extra trip, while some of them do not. Only [28] considered
collaboration between vehicles. In all the other work, it is
assumed that when a route failure occurs, no other vehicle is
able to help, and then a recourse is mandatory.

3) Usage of different performance measures: Table V
shows a large number of different performance measures
that have been designed with particular foci and used in the
optimisation and evaluation processes. Although most of the
work reported the average cost over a number of simulations,
it is impossible to compare different approaches due to the
reasons listed above. Moreover, even if a common benchmark,
for example uval, is used, using different random seeds for
sampling scenarios will introduce noise when comparing ap-
proaches. For a fair comparison, the solutions recommended
by different approaches should be evaluated on an identical
set of scenarios.

As a conclusion, a common benchmark for studying CARP
with uncertainties is needed.

B. Scalability

Most current work focused on small-scale or medium-scale
problem instances. The instances in the UCARP benchmark
sets, ugdb, uegl and uval [9], are small compared to the prob-
lems in reality, not to mention other self-designed instances
of smaller size (cf. Table III). For example, the uval instances

3The Java benchmark generator for sampling UCARP instances, based on
static instances, using the same variable assumptions as in [9], can be found
in the GitHub project: https://github.com/meiyi1986/gpucarp.



16

contain no more than 50 vertices and 97 edges. Meanwhile, in
the studies of DCARP, several sets of static CARP instances
created based on real-world transport networks (e.g., Flanders
district of Belgium [56], [57], Beijing and Hefei of China
with up to 3584 tasks [58], [59]) have been used. More-
over, only [34], [53], [35], [18] focused on multi-objective
DCARP and considered instances of small size only in their
case studies. Adapting recent approaches for handling multi-
objective large-scale DCARP, such as MA based on route
distance grouping [56], to multi-objective large-scale UCARP
is worth investigating.

C. Computation time

As discussed previously in Section IV-G and shown in Table
V, most of the reviewed work did not report the computation
time. The stopping criteria were normally designed as a
maximum number of iterations or when a predefined solution
for a transformed DCARP was found. However, the execution
time is crucial in real-world applications and it is not realistic
to obtain a transformed DCARP due to complex uncertainties.
In reality, we often define a maximum execution time as the
budget and report the best solution found within this budget.

VII. CONCLUSION AND FUTURE DIRECTIONS

Our review in this paper has shown that there has been
a surprising broad range of issues that have been addressed
by published papers on the CARP with uncertainties. There
are many places where uncertainties can occur in the CARP.
Various techniques and algorithms have been adapted or
developed specifically for handling such uncertainties when
finding a near optimal solution to the CARP. However, in
spite of the breadth in research, the depth is largely lacking.
There are still many open research questions that remain to be
answered. This section first draws some conclusions and then
points out possible future research directions.

A. Conclusion

During the past decades, CARP and its variations have
been studied widely due to its large number of real-world
applications. However, most of the work assumed determin-
istic problem instances, which is far from the reality. Till
2002, Fleury et al. [6] started to investigate the robustness of
solutions to the CARP with stochastic demands. To the best of
our knowledge, Mei et al. [9] was the first to propose uncertain
CARPs with different random variables, including random
demands, costs, presence of edges and tasks. Since then, more
and more research studies have been conducted on the robust
optimisation of CARPs with uncertainties. This paper focuses
on the robust optimisation of the CARP with uncertainties
and reviews the related work by discussing the modelling of
uncertainties, robustness evaluation of solutions, uncertainty
handling techniques and robust optimisation approaches, as
well as the learning of routing policies.

The core components for solving UCARP are divided into
three main steps: data prediction, problem solving and decision
making. Published work around the CARP with uncertainties

has very different foci: problem modelling, solvers, metrics
for evaluating solutions, creation of instances, generation of
testing scenarios, etc. These research topics rely highly on the
targeted real-world applications and are often not independent
of each other. The uncertainty modelling, uncertainty handling,
stochastic optimisation and robust decision making are all
important research topics closely related to the CARP with
uncertainties.

B. Future directions

There are three main areas of future research related to the
CARP with uncertainties.

1) Construction of benchmark: It is necessary to construct a
common benchmark for studying the CARP with uncertainties.
Ideally, the benchmark should (i) include a set of different
uncertainties and a set of candidate distributions that can be
used for modelling each uncertainty; (ii) offer the possibility
of adding new uncertainties and models; and finally, (iii) be
constructed based on well-known DCARP benchmarks (such
as val, egl and gdb or larger instances [58]) for an easier
comparison with the deterministic case. The benchmark should
be scalable so that we can test the scalability of any proposed
algorithm.

2) Investigation into new approaches:
a) Simplified assumptions on vehicles: Current recourse

strategies (except [28]) assume that assigning another vehicle
is impossible or inefficient, hence only the actual capacity-
violated vehicle is replanned. In reality, it is possible to
allocate an additional vehicle as an alternative or ask a nearby
vehicle to help.

b) Robustness measures: Expected performance and av-
erage performance are often used in current work. However,
the expectation of variables and even the distributions are
mostly unknown in practice. Robustness measures based on a
weighted average performance computed using Nash equilibria
is worth investigating.

c) More recommendations for decision makers: Besides
the very few approaches using bi-objective optimisation, most
of the approaches recommend one solution only at the end of
their execution. It is worth applying multi- or many-objective
optimisation with user specified preferences, or using proba-
bilistic decision-making models for recommending solutions
to generate a small set of good solutions from which human
decision makers can further select a solution to execute with
their expertise.

d) Hybridisation with classical methods: Features in the
UCARP instances are so far not well exploited. It would be
interesting to exploit such features in new approaches and
to combine problem-independent meta-heuristics, problem-
specific heuristics and classical mathematical programming
methods when designing new solution approaches.

e) Trade-off between exploration and exploitation: Due
to the computational cost of simulating a solution on a
scenario, given a fixed time budget, balancing the trade-
off between the number of times a solution is simulated
and the number of iterations that an algorithm executes is
important for ensuring the computational efficiency in finding
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a near optimum. Empirical studies showed that increasing the
simulation number along with the iteration number can speed
up the convergence, under the assumption that the difference
between solutions becomes smaller when searching is close
to the optimum [60], [61]. However, in the current work,
a constant value of simulations was used for reevaluating
solutions. Determining the optimal simulation number for
stochastic evaluation is crucial and a key topic for future
research.

3) Real-world applications: Most work in the CARP with
uncertainties were experimented on artificial problems only.
Few real-world applications have been implemented except for
[20], [21], in which real data of road networks in Shanghai
city were used. Note that not only real data is needed, and
the actual road conditions and traffic rules in reality, which
probably determine the design of recourse strategies, should
also be considered, as examples given in [7] show: Should
a vehicle always return from a node or is it allowable to
take a U turn at any point along an edge; if the latter case,
how to calculate the cost of its travelled time/distance on
this edge; besides the cost associated to edges, is there any
additional cost of returning to the depot (e.g., cost of a U turn,
cost of refilling/unloading goods)? In the future, it would be
interesting to apply robust optimisation approaches and design
of routing polices to real-world applications of the CARP with
uncertainties.

Real-world problems provide a fertile ground for future
research. There are many new problem formulations that
we should consider in the future, for example, multiple de-
pots [15], multiple vehicle capacities [16], and stochastic and
uncertain decision variables that are, to our best knowledge,
not well exploited.
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